DOI QR코드

DOI QR Code

Numerical Study on the Effect of Reactor Internal Structure Geometry Treatment Method on the Prediction Accuracy for Scale-down APR+ Flow Distribution

원자로 내부 구조물 형상 처리 방법이 축소 APR+ 유동분포 예측 정확도에 미치는 영향에 관한 수치적 연구

  • Lee, Gong Hee (Safety Evaluation Department, Korea Institute of Nuclear Safety) ;
  • Bang, Young Seok (Safety Evaluation Department, Korea Institute of Nuclear Safety) ;
  • Woo, Sweng Woong (Safety Evaluation Department, Korea Institute of Nuclear Safety) ;
  • Cheong, Ae Ju (Nuclear Safety Research Department, Korea Institute of Nuclear Safety)
  • 이공희 (한국원자력안전기술원 안전평가실) ;
  • 방영석 (한국원자력안전기술원 안전평가실) ;
  • 우승웅 (한국원자력안전기술원 안전평가실) ;
  • 정애주 (한국원자력안전기술원 원자력안전연구실)
  • Received : 2013.11.04
  • Accepted : 2014.01.13
  • Published : 2014.03.01

Abstract

Internal structures, especially those located in the upstream of a reactor core, may have a significant influence on the core inlet flow rate distribution depending on both their shapes and the relative distance between the internal structures and the core inlet. In this study, to examine the effect of the reactor internal structure geometry treatment method on the prediction accuracy for the scale-down APR+ flow distribution, simulations with real geometry modeling were conducted using ANSYS CFX R.14, a commercial computational fluid dynamics software, and the predicted results were compared with those of the porous medium assumption. It was concluded that the core inlet flow distribution could be predicted more accurately by considering the real geometry of the internal structures located in the upstream of the core inlet. Therefore, if sufficient computational resources are available, an exact representation of these internal structures, for example, lower support structure bottom plate and ICI nozzle support plate, is needed for the accurate simulation of the reactor internal flow.

원자로 노심 입구에 위치한 내부 구조물들은 형상 및 노심 입구까지의 상대적 거리에 따라 노심 입구 유량분포에 상당한 영향을 미칠 수 있다. 본 연구에서는 원자로 내부 구조물 형상 처리 방법이 축소 APR+ 유동분포 예측 정확도에 미치는 영향을 조사하기 위해 상용 전산유체역학 소프트웨어인 ANSYS CFX R.14를 사용하여 원자로 내부 구조물들의 실제 형상을 고려한 계산을 수행하였고 다공성 매질 가정을 적용한 계산 결과와 비교하였다. 결론적으로 노심 입구 상류에 위치한 원자로 내부 구조물의 실제 형상을 고려함으로써 노심 입구 유량 분포를 더 정확하게 예측할 수 있었다. 따라서 충분한 계산 자원이 확보된 조건인 경우라면 정확한 노심 입구 유량분포를 계산하기 위해 노심 입구 상류에 위치한 원자로 내부 구조물들(예: 하부지지구조물 바닥판 및 노내 계측기 노즐 지지판)의 실제 형상을 고려해서 계산하는 것이 필요하다.

Keywords

References

  1. Euh, D. J., Kim, K. H., Youn, J. H., Bae, J. H., Chu, I. C., Kim, J. T., Kang, H. S., Choi, H. S., Lee, S. T. and Kwon, T. S., 2012, "A Flow and Pressure Distribution of APR+ Reactor Under the 4-Pump Running Conditions with a Balanced Flow Rate," Nuclear Engineering and Technology, Vol. 44, pp. 735-744. https://doi.org/10.5516/NET.02.2012.715
  2. Kim, K. H., Euh, D. J., Chu, I. C., Youn, Y. J., Choi, H. S. and Kwon, T. S., 2013, "Experimental Study of the APR+ Reactor Core Flow and Pressure Distributions under 4-Pump Running Conditions," Nuclear Engineering and Design, Vol. 265, pp. 957-966. https://doi.org/10.1016/j.nucengdes.2013.07.021
  3. Lee, K. B., Im, I. Y., Lee, B. J. and Kuh, J. E., 1991, "YGN 3&4 Reactor Flow Model Test," Journal of the Korean Nuclear Society, Vol. 23, pp. 340-351.
  4. Rohde, U., Hohne, T., Kliem, S., Hemstrom, B., Scheuerer, M., Toppila, T., Aszodi, A., Boros, I., Farkas, I., Muhlbauer, P., Vyskocil, L., Klepac, J., Remis, J. and Duryi, T., 2007, "Fluid Mixing and Flow Distribution in a Primary Circuit of a Nuclear Pressurized Water Reactor - Validation of CFD Codes," Nuclear Engineering and Design, Vol. 237, pp. 1639-1655. https://doi.org/10.1016/j.nucengdes.2007.03.015
  5. Menter, F., 2001, "CFD Best Practice Guidelines for CFD Code Validation for Reactor Safety Applications," ECORA CONTRACT $N^{\circ}$ FIKS-CT-2001-00154.
  6. Lee, G. H., Bang, Y. S., Woo, S. W., Kim, D. H. and Kang, M. G., 2013, "Numerical Analysis of the Internal Flow Distribution in Scale-Down APR+," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 9, pp. 863-870. https://doi.org/10.3795/KSME-B.2013.37.9.855
  7. Lee, G. H., Bang, Y. S., Woo, S. W., Cheong, A. J., Kim, D. H. and Kang, M. G., 2013, "A Numerical Study for the Effect of Flow Skirt Geometry on Reactor Internal Flow," Annals of Nuclear Energy, Vol. 62, pp. 452-462. https://doi.org/10.1016/j.anucene.2013.07.005
  8. Lee, G. H., Bang, Y. S., Woo, S. W., Kim, D. H. and Kang, M. G., 2013, "Comparative Study of the Commercial CFD Software Performance for the Prediction of the Reactor Internal Flow," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 12, pp. 1175-1183. https://doi.org/10.3795/KSME-B.2013.37.12.1175
  9. ANSYS CFX, Release 14.0, ANSYS Inc.
  10. ANSYS CFX-Solver Modeling Guide, 2011, ANSYS Inc.
  11. Bieder, U. and Graffard, E., 2008, "Qualification of the CFD Code Trio_U for Full Scale Reactor Applications," Nuclear Engineering and Design, Vol. 238, pp. 671-679. https://doi.org/10.1016/j.nucengdes.2007.02.040
  12. Lee, B. J., Jang, H. C., Cheong, J. S., Baek S. J. and Park, Y. S., 2001, "A Review on the Regionalization Methodology for Core Inlet Flow Distribution Map," Journal of the Korean Nuclear Society, Vol. 33, pp. 441-456.

Cited by

  1. Numerical Analysis of Flow Distribution Inside a Fuel Assembly with Split-Type Mixing Vanes vol.40, pp.5, 2016, https://doi.org/10.3795/KSME-B.2016.40.5.329