• Title/Summary/Keyword: 다공성 건설재료

Search Result 22, Processing Time 0.029 seconds

Evaluation of PLA Fiber Dissolution in Cement Paste and Geopolymer (시멘트 페이스트 및 지오폴리머 내의 PLA 섬유의 용해성 평가)

  • Kim, Joo-Hyung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.204-211
    • /
    • 2020
  • Poly-Lactic Acid(PLA) fiber is an eco-friendly material and is biodegradable, so it can be utilized for manufacturing porous construction materia ls with interna l pore connection. In this study, domestic PLA fiber products(0.5mm india meter, 1.0mm in length, 10mm in length) were tested for melting at high temperatures and high alkality, and they were incorporated with FA-based geopolymer. Compressive strength was obtained through high temperature curing and alkali activator, however the complete melting of the PLA fiber was not ensured. The previous study handling PLA fiber with 0.003mm in diameter was completely dissolved, but 0.5mm and 1.0mm in diameter showed 42.5% and 33.3% of dissolution ratio, respectively. In addition, the increasing fiber volume led floating fibers during curing, which had a negative effect on its workability and solubility. Although the properties of PLA fiber may vary depending on the raw materials and production conditions, PLA fiber with 0.1mm or less diameter is recommended for porous construction material.

Reactivity Improvement Characteristics of Weathered Feldspar through Activation Technique (활성기법을 통한 풍화된 장석의 반응성 개선 특성)

  • Cho, Jinwoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.33-41
    • /
    • 2021
  • Feldspar, along with Quartz, are the most frequently produced minerals in Korea; however, the potential value is estimated to be significantly low because of the scarce research on the development and application of material properties, except for their limited use in manufacturing minerals, glass, and paints. In this study, we analyzed the eco-friendly material and reactivity improvement characteristics of weathered feldspar through activation technique. The joint structural features observed on the surface of the weathered feldspar show that the joint arrangements are irregularly distributed, and the cavities are interconnected. Due to the irregularly connected cavities on the surface of weathered feldspar, the reaction area of the weathered feldspar is increased; hence the weathered feldspar is considered as a highly reactive pozzolan material when combined with cement. As a result of applying the thermal, mechanical, and chemical activation techniques to improve the functionality of the weathered feldspar, the cation exchange capacity, density, and uniaxial compression strength characteristics were improved. It is considered that weathered feldspar by these porous characteristics can be used as an eco-friendly construction material with excellent physical and chemical properties.

An Experimental Study on Thermal Property of Porous Concrete Containing Bottom Ash (바텀애시를 활용하는 다공성 콘크리트의 열전도 특성에 관한 실험 연구)

  • Jeong, Seung-Tae;Kim, Bum-Soo;Park, Ji-Hun;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.625-632
    • /
    • 2021
  • In this paper, the applicability of bottom ash to insulation concrete was investigated to increase the utilization of bottom ash. Bottom ash was used as the aggregates in porous concrete and extensive experiments were conducted to investigate the characteristics of porous concrete using two types of bottom ash aggregates. The water-binder ratios of 0.25 and 0.35 were chosen and concrete specimens was produced with the compaction of 0.5, 1.5, and 3.0MPa to analyze the material properties at different compaction conditions. After concrete specimens were cured for 28 days at water tanks, unit weight, total void ratio, and thermal conductivity were measured. Based on the measured experimental results, the relationships between the unit weight, total void ratio, and thermal conductivity of porous concrete containing bottom ash was presented.

Effect of Maximum Aggregate, Porosity, and Temperature on Crack Resistance and Moisture Susceptibility of Porous Asphalt Mixtures (최대입경, 공극률, 온도가 다공성 아스팔트 혼합물의 균열저항성 및 수분민감성에 미치는 영향)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Park, Ki-Soo;Yoon, Kang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.611-619
    • /
    • 2021
  • Porous asphalt pavement (PAP) has many functions, such as reducing accidents and decreasing noise. On the other hand, vulnerability is inevitable because PAP contains approximately 20% porosity. This study evaluated the effects of the maximum aggregate size (MAS), temperature, and porosity on the PAP durability. The indirect tensile strength measures durability. This study tested the samples that stayed dry and were moisturized by freezing and thawing for mixtures having the same porosity of 20% and MAS of 13mm, 10mm, and 8mm. The same test was performed on a mixture of 20% and 22% voids made of the same material with a MAS of 10mm. As a result, for 20% porosity, significant differences in the changes in MAS and temperature were found. A clear difference was observed between 8mm and 13mm under dry conditions, but there were no other significant differences in the MAS change. Furthermore, there was a clear difference in temperature for the change in porosity and temperature, but the gap in 2% porosity at 20% did not show a clear difference. Therefore, it is necessary to develop a more durable PAP through quantitative evaluations of the factors affecting the PAP durability.

Back Pressure Dissipation and Vegetation Restoration Effect of Land Slope by Using Mattress/Filter (Mattress/Filter를 이용한 절개지사면의 배수압소산과 식생복원효과)

  • Park, Jae Min;Bae, Sang Su;Lee, Seung Yun;Jee, Hong Kee;Lee, Soontak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1395-1399
    • /
    • 2004
  • 절개지사면에 구조물이 설치될 경우 배수압소산과 식생복원을 위해서는 기본적으로 다공성이 뛰어나고 식생의 서식이 가능한 구조물로 설계되어야 하며, 동시에 사면의 안정을 제공해주는 기능을 할 수 있어야 한다. 구조물이 설치될 지역에 Mattress/Filter를 사용할 경우 배수압의 소산과 식생의 활착이 가능한 구조물로 사면의 안정과 식생복원효과를 검토하였다. 본 연구에서는 절개지사면에 토목구조물이 설치될 경우 식생의 복원과 구조물의 안정성을 높이기 위한 기법으로 Mattress/Filter에 Slag를 채워서 다공성을 부여함으로써 사면의 배수압소산과 식생촉진 뿐만 아니라 사면의 안정성을 제공해줄 수 있는 구조이다. 특히, Mattress/Filter는 다공성이 뛰어나 자연배수가 가능한 구조물로서 그 구변 생태계에 필수적인 물의 상호교류 즉, 투수와 배수가 가능하고 배수압의 소산이 가능하여 식생복원과 사면안정에 우수한 것으로 나타났다. Mattress옹벽은 배면의 지하수 배제를 촉진시켜 사면의 안정화에 기여하게 되려, 식생의 복원에 뛰어난 효과가 있는 것으로 나타났다. 또한 Mattress에서 Fitter의 채움 재료로 산업계기물(Slag) 및 건설폐기물(폐콘크리트, 사석) 등을 재활용할 수 있으므로 Mattress는 채움재료의 비용이 저렴하고 유지관리가 용이하며, 생태계의 보존에도 Mattress/Filter의 사용은 매우 효과적임을 알 수 있었다.

  • PDF

Analysis of the Effect of Maximum Aggregate, Porosity, and Temperature on Durability of Porous Asphalt Mixtures (최대입경, 공극률, 그리고 온도가 다공성 아스팔트 혼합물의 내구성에 미치는 영향분석)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Park, Ki-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.227-233
    • /
    • 2020
  • The demand for porous asphalt mixtures is increasing because it has a range of functions, such as reducing traffic accidents and traffic noise. On the other hand, its application is delayed due to concerns about durability. This study examined the effects of the maximum aggregate size, temperature, and porosity of an asphalt mixture on the durability. To this end, the durability measure was set to the Cantabro loss rate. Mixtures having the same porosity of 20% and the maximum aggregate diameters of 13 mm, 10 mm, and 8 mm were tested at 20℃ and -20℃. Mixtures containing 20% and 22% voids with the same material having the same diameter were tested. With 20% porosity, there was no significant difference in durability when there was a change in the maximum aggregate size. There was a significant difference between 20℃ and -20℃, but no significant difference in durability when there was a 2% difference between 20% and 22%. The significance of this study is that the durability was presented quantitatively by tests and statistical analysis. This research will help improve the durability of porous asphalt mixtures by evaluating the factors affecting the durability quantitatively.

Correlation Analysis between Unit Weight and Thermal Conductivity in Porous Concrete Containing Natural Fine and Bottom Ash Aggregates (바텀애시와 천연 잔골재를 혼입한 다공성 콘크리트의 단위질량과 열전도도의 상관분석)

  • Seung-Tae Jeong;In-Hwan Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.542-551
    • /
    • 2023
  • In this paper, the thermal properties of porous concrete containing natural fine aggregates in bottom ash aggregates were analyzed. In this study, natural fine aggregates were used for bottom ash aggregates to understand the material properties of each aggregate and then used as an aggregate for porous concrete. A porous concrete specimen was manufactured by fixing the water-binder ratio at 0.25 and designating the compaction at 0.5, 1.5, and 2.5 MPa. Unit weight, total void ratio and thermal conductivity test were measured and discussed. As the compaction increased and the mixing ratio of natural fine aggregates increased, the unit weight and thermal conductivity increased, and the total void ratio decreased. In addition, the correlations between unit weight, total void ratio and thermal conductivity of porous concrete with previous experimental data were presented and the correlation coefficient (R2) was also analyzed.

Effect of Concrete Containing the Biochar on Properties and Thermal Insulation Performance (바이오차를 혼입한 콘크리트의 물성 특성과 단열성능에 미치는 영향)

  • Kyoung-Chul, Kim;Kyung-Taek, Koh;Min-Su, Son;Gum-Sung, Ryu;Jae-Yoon, Kang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.428-434
    • /
    • 2022
  • This study intends to develop an eco-friendly concrete panel mixed with biochars. Experiments about mechanical and thermal properties were conducted on porous biochar concrete, which has insulation and carbon-capture performance. The concrete has a mixing ratio of 0, 5, 10, and 15 % for biochar and a water-binder ratio of 0.35. The unit weight, porosity, and permeability were measured to evaluate the mechanical characteristics. From the results, as the biochar mixing rate increased, the porosity and the permeability increased, but the unit weight decreased. Even though a decreased trend was observed in the compressive strength results, they satisfied the design standard. Since the thermal conductivity was decreased during the increase of contents, biochar could be considered an excellent material for insulation performance. In addition, regression analyses were conducted regarding the relationship of unit weight with porosity, compressive strength with thermal conductivity, and porous with thermal conductivity. From the regression, significant variables for expanding the scope of the application of biochar were presented.

Strength Properties of Porous Concrete Containing Natural Fine Aggregate and Bottom Ash Aggregate (천연 잔골재와 바텀애시 골재를 활용한 다공성 콘크리트의 강도 특성)

  • Seung-Tae Jeong;Ji-Hun Park;In-Hwan Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.192-201
    • /
    • 2023
  • In this paper, the strength properties of porous concrete containing natural fine aggregates and bottom ash aggregates were investigated, The material properties of natural fine aggregates and bottom ash were identified then used as aggregates for porous concrete. The water-binder ratio was constant at 0.25, and the com paction level of 0.5, 1.5, and 2.5 MPa was applied to produce a porous concrete specimen. Test of unit weight, ultrasonic velocity, compressive strength, and flexural tensile strength were perform ed and analyzed. The unit weight, ultrasonic velocity, com pressive strength, and flexural tensile strength increased as the compaction level increased and also the replacement rate of bottom ash with sand(fine aggregate) increased. In addition, through regression analysis, the correlation between the unit weight, compressive strength, and flexural tensile strength of bottom ash porous concrete was presented. Unit weight and strength properties are proportional to each other and showed an increasing correlation. In addition, the correlation coefficient (R2) value of regression analysis was calculated based on the experimental results of this study and those of other research papers.

A Study on the Properties of Mortar with Recycled Fine Aggregate (순환잔골재를 사용한 모르타르의 제물성에 관한 실험적 연구)

  • Moon, Dae-Joong;Choi, Jae Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.96-100
    • /
    • 2009
  • The properties of recycled fine aggregates which had different source concrete were examined by mortar test. With higher strength of source concrete, specific gravity of recycled fine aggregate was higher and absorption of recycled fine aggregate was lower due to reduction of the volume of adhered cement paste. The compressive strength and flexible strength of mortar with recycled fine aggregate were affected by the interface boundary of new mortar and the strength of adhered mortar. Strength development of mortar with recycled fine aggregate reduced because recycled fine aggregate become a porous material with the smaller strength of source concrete. The drying shrinkage of mortar was about$800{\sim}2000{\mu}m/m$. It was about 1.5 times than that of mortar with natural fine aggregate. Relative dynamic modulus of elasticity was a similar level with that of mortar with natural fine aggregate.

  • PDF