• Title/Summary/Keyword: 능동 질량 댐퍼

Search Result 9, Processing Time 0.027 seconds

Performance Investigation of Semi-Active Damper Considering Mass Modeling of Functional Fluid (작동유체 질량을 고려한 유연우주트러스구조물 제진용 반능동 댐퍼의 성능분석)

  • Oh, Hyun-Ung;Choi, Young-Jun;Lee, Kyong-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.450-456
    • /
    • 2009
  • Semi-active vibration control is one of the attractive control methods for space application due to its robustness as passive damping system and much higher damping performance than passive system. In this paper, performance investigation of semi-active damper considering a mass modeling of functional fluid inside of the damper has been performed. Numerical investigation results confirmed that the damper model considering the fluid mass is effective for vibration suppression performance at a relatively low viscosity range of functional fluid. Based on the analysis results, design method to enhance the performance of semi-active damper has been proposed.

Modified Decentralized Bang-Bang Control Seismically Excited Structures Using MR Dampers (지진하중을 받는 구조물의 수정된 분산뱅뱅 제어기법을 이용한 MR Damper 제어)

  • Cho, Sang-Won;Kim, Byung-Wan;Kim, Woon-Hak;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.417-423
    • /
    • 2002
  • Magnetorheological(MR) 댐퍼는 적은 용량의 전력을 사용하고 반응속도가 빠른 장점 때문에 구조물의 내진제어에 적당하여, 근래에 주목받고 있는 새로운 장치이다. MR 댐퍼는 반능동 제어 장치로써, 능동 질량감쇠기와는 다른 특성을 갖는다. 즉 필요한 제어력을 제어신호로 직접 생성해 낼 수 없는 대신에 MR 댐퍼의 입력전원을 제어하여 간접적으로 제어한다. 따라서 MR 댐퍼의 반능동 제어장치로써의 특성을 고려하는 효과적인 제어기법이 요구된다. 그러므로 본 연구에서는 지진에 대한 구조물의 응답을 줄이기 위해서, MR댐퍼를 제어할 수 있는 반능동 제어기법을 Lyapunov 안정성 이론을 바탕으로 제안하고자 한다. 제안방법을 검증하기 위해, 전단형 MR 댐퍼를 1층과 2층에 설치한 수치예제를 수행하였다.

  • PDF

자기유변유체 댐퍼를 이용한 대형구조물의 반능동제어

  • 윤정방;구자인;김상범;전준보
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.127-132
    • /
    • 2001
  • 자기유변유체감쇠기를 이용한 반능동 제어 시스템은 최근에 개발되어 승용차의 승차감 향상을 위한 진동제어에 사용되고 있다. 본 연구에서는 바람, 지진, 파랑 등에 대한 대형구조물의 진동제어를 위한 MR 감쇠기의 적용성을 분석하기 위하여, 미국 토목학회에서 제안한 76층 건물의 풍하중에 대한 진동제어에 관한 Benchmark Problem에 대하여 수치모의 해석을 수행하였다. 연구결과로부터, 풍하중에 대한 고층 건물의 진동제어를 위하여 MR 감쇠기를 이용한 반능동 제어의 성능은 능동형 동조질량 감쇠기의 성능과 유사함을 확인할 수 있었다.

  • PDF

FxLMS Algorithm for Active Vibration Control of Structure By Using Inertial Damper with Displacement Constraint (관성형 능동 댐퍼를 이용한 구조물 진동 제어에서 댐퍼 질량의 변위 제한을 고려한 FxLMS 알고리즘)

  • Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.545-557
    • /
    • 2021
  • Engine is the main source of vibration that generates unwanted noise and vibration of vehicle chassis. Especially, in submarine applications, radiation of noise signatures can be detected at some distance away from the submarine using a sonar array. Thus quiet operation is crucial for submarine's survivability. This study addresses reduction of the force transmissibility originating from engines and transmitted to hull through engine mounts. An inertial damper, as an actuator of hybrid mount system, is addressed to reduce even further the level of vibration. Narrow band FxLMS algorithms are broadly used to cancel the vibration of engine mount because of its excellent performance of canceling narrow band noise. However, in real active dampers, the maximum displacement of damper mass is kinematically restricted. When the control input signal from the FxLMS algorithm exceeds this limitation, the damper mass will collide with the mechanical stops and results in many problems. Originated from these, a modified narrow band FxLMS algorithm based on the equalizer technique with the maximum allowable displacement of active damper mass is proposed in this study. Some simulation results showed that the propose algorithm is effective to suppress vibration of engine mount while ensuring given displacement constraint.

System Identification of MIMO Systems Considering Analytically Determined Information (해석적인 정보를 고려한 다중입력을 받는 다자유도계 구조물의 시스템 규명 기법 개발)

  • Kim, Saang-Bum;Spencer B. F., Jr.;Yun, Chung-Bang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.712-717
    • /
    • 2005
  • This paper presents a system identification method for multi-input, multi-output (MIMO) systems, by which a rational polynomial transfer function model is identified from experimentally determined frequency response function data. Analytically determined information is incorporated in this method to obtain a more reliable model, even in the frequency range where the excitation energy is limited. To verify the suggested method, shaking table test for an actively controlled two-story, bench-scale building employing an active mass damper is conducted. The results show that the proposed method is quite effective and robust for system identification of MIMO systems.

An Experiment Study of Semi-Active Damper Using Magnetic fluid (자성유체를 이용한 반능동식 댐퍼에 관한 실험적 연구)

  • Hwang, Seung-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.4 s.25
    • /
    • pp.24-31
    • /
    • 2004
  • The aim of this study is to provide fundamental information for the development of Semi-Active Damper Using Magnetic fluid. To achieve the aim, the damping effect of magnetic fluid is investigated by experiments that the diameter of inner circular bar and the input amplitude were varied in the magnetic field generated by the permanent magnet and the electromagnet coil. From the study, the following conclusive remarks can be made. As the diameter of inner circular bar and input amplitude increase, the damping effect is improved. This is explained by the fact that as the contact area between inner circular bar and magnetic fluid increases, the increase of friction lowers kinematic energy. If the magnetic field is generated, the damping effect is improved. This is explained the assumption that as the intensity of magnetic fluid particle increases, there is virtual mass phenomenon.

Vibration Control of Steel-Frame Structures by a Linear Motor Damper (선형 모터 댐퍼를 이용한 철골 구조물의 진동제어)

  • 문석준;정태영;임채욱;정정교;박진일;김두훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.49-58
    • /
    • 2003
  • The linear motor has not only no backlash and less friction, resulting in very high accuracy, but also mechanical simplicity, higher reliability, and longer lifetime. In this study, a large-capacity hybrid mass damper using linear motor principle has been developed to suppress vibration of large structures. It is designated linear motor damper in this paper. The LMD has been designed to be able to move the auxiliary damper mass of 155kg up to $\pm$250mm stroke. A series of performance tests for LMD control system with $H_{winfty}$ robust controller have been carried out on the full-scale steel frame structure. Through the performance tests, it is confirmed that vibration response levels are reduced down 10dB for the first and second modes of the test structure.

Optimal Design of a Hybrid Structural Control System using a Self-Adaptive Harmony Search Algorithm (자가적응 화음탐색 알고리즘을 이용한 복합형 최적 구조제어 시스템 설계)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.301-308
    • /
    • 2018
  • This paper presents an optimal design method of a hybrid structural control system considering multi-hazard. Unlike a typical structural control system in which one system is designed for one specific type of hazard, a simultaneous optimal design method for both active and passive control systems is proposed for the mitigation of seismic and wind induced vibration responses of structures. As a numerical example, an optimal design problem is illustrated for a hybrid mass damper(HMD) and 30 viscous dampers which are installed on a 30 story building structure. In order to solve the optimization problem, a self-adaptive Harmony Search(HS) algorithm is adopted. Harmony Search algorithm is one of the meta-heuristic evolutionary methods for the global optimization, which mimics the human player's tuning process of musical instruments. A self-adaptive, dynamic parameter adjustment algorithm is also utilized for the purpose of broad search and fast convergence. The optimization results shows that the performance and effectiveness of the proposed system is superior with respect to a reference hybrid system in which the active and passive systems are independently optimized.

Real-time Feedback Vibration Control of Structures Using Wireless Acceleration Sensor System - System Design and Basic Performance Evaluation - (무선 가속도센서 시스템을 이용한 건축물의 실시간 피드백 진동제어 - 시스템 구축 및 기초성능 평가 -)

  • Jeon, Joon Ryong;Park, Ki Tae;Lee, Chin Ok;Heo, Gwang Hee;Lee, Woo Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.21-32
    • /
    • 2013
  • This is a preliminary study for the real-time feedback vibration control of building structures. The study developed a wireless acceleration sensor system based on authentic technology capacities, to integrate with the Prototype AMD system and ultimately construct the feedback vibration control system. These systems were used to evaluate the basic performance levels of the control systems within model building structures. For this purpose, the study first developed a wireless acceleration sensor unit that integrates an MEMS sensor device and bluetooth communication module. Also, the study developed an operating program that enables control output based on real-time acceleration response measurement and control law. Furthermore, the Prototype AMD and motor driver system were constructed to be maneuvered by the AC servo-motor. Eventually, all these compositions were used to evaluate the real-time feedback vibration control system of a 2-story model building, and qualitatively measure the extent of vibrational reduction of the target structure within the laboratory validation tests. As a result of the tests, there was a definite vibrational reduction effect within the laboratory validation tests. As a result of the tests, there was a definite vibrational reduction effect within 1st and 2nd resonance frequency as well as the random frequency of the model building structure. Ultimately, this study confirmed the potential of its wireless acceleration sensor system and AMD system as an effective tool that can be applied to the active vibration control of other structures.