• Title/Summary/Keyword: 뇌 자기공명영상

Search Result 407, Processing Time 0.028 seconds

Altered Functional Connectivity of the Executive Control Network During Resting State Among Males with Problematic Hypersexual Behavior (문제적 과잉 성 행동자의 휴지기 상태 시 집행 통제 회로의 기능적 연결성 변화)

  • Seok, Ji-Woo
    • Science of Emotion and Sensibility
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2019
  • Individuals with problematic hypersexual behavior (PHB) evince the inability to control sexual impulses and arousal. Previous studies have identified that these characteristics are related to structural and functional changes in the brain region responsible for inhibitory functions. However, very little research has been conducted on the functional connectivity of these brain areas during the resting state in individuals with PHB. Therefore, this study used functional magnetic resonance imaging devices with the intention of identifying the deficit of the functional connectivity in the executive control network in individuals with PHB during the resting state. Magnetic resonance imaging data were obtained for 16 individuals with PHB and 19 normal controls with similar demographic characteristics. The areas related to the executive control network (LECN, RECN) were selected as the region of interest, and the correlation coefficient with time series signals between these areas was measured to identify the functional connectivity. Between groups analysis was also used. The results revealed a significant difference in the strength of the functional connectivity of the executive control network between the two groups. In other words, decreased functional connectivity was found between the superior/middle frontal gyrus and the caudate, and between the superior/middle frontal gyrus and the superior parietal gyrus/angular gyrus in individuals with PHB. In addition, these functional Connectivities related to the severity of hypersexual behavior. The findings of this study suggest that the inability to control sexual impulses and arousal in individuals with PHB might be related to the reduced functional connectivity of executive control circuits.

A Study on Pathological Pattern Detection using the quasi-Bisymmetry of MRI DWI Brain Image (MRI 확산강조 뇌영상의 유사대칭성을 이용한 병변검출에 관한 연구)

  • Kim, S.H.;Lee, H.W.;Lee, J.W.;Jeong, W.G.;Gang, Ik-Tae;Lee, G.K.
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.4
    • /
    • pp.37-44
    • /
    • 2009
  • Stroke patients are the most in the cause of death among Koreans. Therefore, an accurate diagnosis of stroke is very important. But, it is the only way to diagnose strokes that the doctors see the MRI image and detect the pathological pattern. In this paper, we proposed the new method to detect the pathological pattern of a suspected stroke. We used the quasibi-symmetry of the MRI brain image in our new method. we detected pathological pattern applied the proposed method, and show the result.

  • PDF

A feasibility study on new stimulation method in fMRI language examinations using custom designed images (기능적 자기공명영상의 언어기능검사 시 image를 이용한 자극방법의 타당성 연구)

  • Choi, Kwan-Woo;Son, Soon-Yong;Jeong, Mi-Ae;Min, Jung-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5005-5011
    • /
    • 2011
  • The purpose of this work is to know the validity of a new stimulation method in cognitive functional imaging using custom-designed images correspond to words or syllables improving the shortcomings of existing method using text. From March 2011 to May five Subjects in need of language related functional MRI scanning were selected and both of text stimulating method and image stimulating method sacanning were carried out three times each. Using 3.0T Philps MRI machine and Invivo Co's Eloquence system, data acquisition was performed with EPI-BOLD technique. Post processing was performed with SPM 99 while the activated signals were determined within 95 percent confidence level.The number of activation clusters and the activation ratio inside ROI were compared. As as result, all of the subject showed activation inside Broca area but it did not have statistical significance. In conclusion, the image sitimulation method has potential because image itself is a common means of recognition and it can be recognised easily even if there language barrier. This stimulation method can be applied to replacing the exising scanning method especially in the elderly, infants, foerigners who may not fully understand about the examination.

Evaluation of Clinical Usefulness of Radio-Frequency Power Limitation in Brain MRI of Patients with Deep Brain Stimulation (뇌심부자극술 시술환자의 뇌 자기공명영상에서 고주파 출력의 제한기준에 대한 임상적 유용성 평가)

  • Yeon, Kyoo-Jin;Chang, Young-Ae;Lee, Seung-Keun;Lee, Tae-Soo
    • Journal of Radiation Industry
    • /
    • v.11 no.3
    • /
    • pp.139-144
    • /
    • 2017
  • To evaluation of clinical usefulness for B1+RMS limits, we compared image quality of Routine, Specific absorption rate (SAR) and Root mean square (RMS) protocol. 5 volunteers underwent Magnetic Resonance Imaging (MRI) scan of the brain using three different protocols. We draw Region of interest ROI in cortex, white matter, gray matter, putamen and thalamus of axial plan. Signal to noise ratio (SNR) were evaluated in each area and Contrast to noise ration (CNR) were evaluated between white matter and gray matter. Qualitative evaluation was used to score each ROI. B1+RMS is confirmed its usefulness compared to conventional SAR standard on the aspect of improvement of image quality, reduction of scan time and easy adjusting parameter.

Multi-Component Relaxation Study of Human Brain Using Relaxographic Analysis (Relaxographic 분석법을 이용한 뇌의 다중 자기이완특성에 관한 연구)

  • Yongmin Chang;Bong Soo Han;Bong Seok Kang;Kyungnyeo Jeon;Kyungsoo Bae;Yong-Sun Kim;Duk-Sik Kang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.120-128
    • /
    • 2002
  • Purpose : To demonstrate that the relaxographic method provides additional information such as the distribution of relaxation times and water content which are poentially applicable to clinical medicine. Materials and Methods : First, the computer simulation was performed with the generated relaxation data to verify the accuracy and reliabilility of the relaxographic method (CONTINI). Secondly, in or der to see how well the CONTIN quantifies and resolves the two different ${T_1}$ environments, we calculated the oil to water peak area ratios and identified peak positions of ${T_1}-distribution$ curve of the phantom solutions, which consist of four centrifugal tubes (10 ml) filled with the compounds of 0, 10, 20, 30% of corn oil and distilled water, using CONTIN. Finally, inversion recovery MR images for a volunteer are acquired for each TI ranged from 40 to 1160 msec with TR/TE=2200/20 msec. From the 3 different ROIs (GM, WM, CSF), CONTIN analysis was performed to obtain the ${T_1}$-distribution curves, which gave peak positions and peak area of each ROI location. Results : The simulation result shows that the errors of peak positions were less in the higher peak (centered ${T_1}=600$ msec) than in the lower peak (centered ${T_1}=150$ msec) for all SNR but the errors of peak areas were larger in the higher peak than in the lower peak. The CONTIN analysis of the measured relaxation data of phantoms revealed two peaks between 20 and 60 msec and between 500 and 700 msec. The analysis gives the peak area ratio as oil 10%: oil 20%: oil 30% = 1:1.3:1.9, which is different from the exact ratio, 1:2:3. For human brain, in ROI 3 (CSF), only one component of -distributions was observed whereas in ROI 1(GM) and in ROI 2 (WM) we observed two components of ${T_1}-distribution$. For the WM and CSF there was great agreement between the observed ${T_1}-relaxation$ times and the reported values. Conclusion : we demonstrated that the relaxographic method provided additional information such as the distribution of relaxation times and water content, which were not available in the routine relaxometry and ${T_1}/{T_2}$ mapping techniques. In addition, these additional information provided by relaxographic analysis may have clinical importance.

  • PDF

Susceptibility-Weighted Imaging as a Distinctive Imaging Technique for Providing Complementary Information for Precise Diagnosis of Neurologic Disorder (신경계 질환에 관한 정확한 진단을 위해 다양한 보완 정보를 제공하는 독특한 영상 기법으로서의 자기화율 강조 영상)

  • Byeong-Uk Jeon;In Kyu Yu;Tae Kun Kim;Ha Youn Kim;Seungbae Hwang
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.1
    • /
    • pp.99-115
    • /
    • 2021
  • Various sequences have been developed for MRI to aid in the radiologic diagnosis. Among the various MR sequences, susceptibility-weighted imaging (SWI) is a high-spatial-resolution, three-dimensional gradient-echo MR sequence, which is very sensitive in detecting deoxyhemoglobin, ferritin, hemosiderin, and bone minerals through local magnetic field distortion. In this regard, SWI has been used for the diagnosis and treatment of various neurologic disorders, and the improved image quality has enabled to acquire more useful information for radiologists. Here, we explain the principle of various signals on SWI arising in neurological disorders and provide a retrospective review of many cases of clinically or pathologically proven disease or components with distinctive imaging features of various neurological diseases. Additionally, we outline a short and condensed overview of principles of SWI in relation to neurological disorders and describe various cases with characteristic imaging features on SWI. There are many different types diseases involving the brain parenchyma, and they have distinct SWI features. SWI is an effective imaging tool that provides complementary information for the diagnosis of various diseases.

Semi-automated Tractography Analysis using a Allen Mouse Brain Atlas : Comparing DTI Acquisition between NEX and SNR (알렌 마우스 브레인 아틀라스를 이용한 반자동 신경섬유지도 분석 : 여기수와 신호대잡음비간의 DTI 획득 비교)

  • Im, Sang-Jin;Baek, Hyeon-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.157-168
    • /
    • 2020
  • Advancements in segmentation methodology has made automatic segmentation of brain structures using structural images accurate and consistent. One method of automatic segmentation, which involves registering atlas information from template space to subject space, requires a high quality atlas with accurate boundaries for consistent segmentation. The Allen Mouse Brain Atlas, which has been widely accepted as a high quality reference of the mouse brain, has been used in various segmentations and can provide accurate coordinates and boundaries of mouse brain structures for tractography. Through probabilistic tractography, diffusion tensor images can be used to map comprehensive neuronal network of white matter pathways of the brain. Comparisons between neural networks of mouse and human brains showed that various clinical tests on mouse models were able to simulate disease pathology of human brains, increasing the importance of clinical mouse brain studies. However, differences between brain size of human and mouse brain has made it difficult to achieve the necessary image quality for analysis and the conditions for sufficient image quality such as a long scan time makes using live samples unrealistic. In order to secure a mouse brain image with a sufficient scan time, an Ex-vivo experiment of a mouse brain was conducted for this study. Using FSL, a tool for analyzing tensor images, we proposed a semi-automated segmentation and tractography analysis pipeline of the mouse brain and applied it to various mouse models. Also, in order to determine the useful signal-to-noise ratio of the diffusion tensor image acquired for the tractography analysis, images with various excitation numbers were compared.

The significance of corpus callosal size in the estimation of neurologically abnormal infants (신경학적인 결함이 있었던 영아의 예후 판단에서 뇌량 크기의 중요성)

  • Yu, Seung Taek;Lee, Chang Woo
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.11
    • /
    • pp.1205-1210
    • /
    • 2008
  • Purpose : The development of the corpus callosum occupies the entire period of cerebral formation. The myelination pattern on magnetic resonance imaging (MRI) is very useful to evaluate neurologic development and to predict neurologic outcome in high risk infants. The thickness of the corpus callosum is believed to depend on the myelination process. It is possible to calculate the length and thickness of the corpus callosum on MRI. Thus, we can quantitatively evaluate the development of the corpus callosum. We investigated the clinical significance of measuring various portions of the corpus callosum in neonate with neurologic disorders such as hypoxic brain damage and seizure disorder. Methods : Forty-two neonates were evaluated by brain MRI. We measured the size of the genu, body, transitional zone, splenium, and length of the corpus callosum. Each measurement was divided by the total length of the corpus callosum to obtain its corrected size. The ratio of corpus callosal length and the anteroposterior diameter of the brain was also measured. Results : There was no statistical significance in the sample size of each part of the corpus callosum. However, the corrected size or the ratio of body of the corpus callosum correlated with periventricular leukomalacia and hypoxic ischemic encephalopathy. Conclusion : The abnormal size of the corpus callosum showed a good correlation with periventricular leukomalacia and hypoxic ischemic encephalopathy in neonates. We can predict clinical neurological problems by estimation of the corpus callosum in the neonatal period.

The Influence of MR Gradient Acoustic Noise on fMRI (MR 경사 자계 소음이 뇌기능 영상에 미치는 영향)

  • S. C. Chung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.50-57
    • /
    • 1998
  • MR acoustic sound or noise due to gradient pulsings has been one of the problems in MRI, both in patient scanning as well as in many areas of psychiatric and neuroscience research, such as brain fMRI. Especially in brain fMRI, sound noise is one of the serious noise sources which obscures the small signals obtainable from the subtle changes occurring in oxygenation status in the cortex and blood capillaries. Therfore, we have studied the effects of acoustic or sound noise arising in fMR imaging of the auditory, motor and visual cortices. The results show that the acoustical noise effects on motor and visual responses are opposite. That is, for the motor activity, it shows an increased total motor activation while for the visual stimulation, corresponding(visual) cortical activity has diminished substantially when the subject is exposed to a loud acoustic sound. Although the current observations are preliminary and require more experimental confirmation, it appears that the observed acoustic-noise effects on brain functions, such as in the motor and visual cortices, are new observations and could have significant consequences in data observation and interpretation in future fMRI studies.

  • PDF

Brain MRI-Based Artificial Intelligence Software in Patients with Neurodegenerative Diseases: Current Status (퇴행성 뇌질환에서 뇌 자기공명영상 기반 인공지능 소프트웨어 활용의 현재)

  • So Yeong Jeong;Chong Hyun Suh;Ho Young Park;Hwon Heo;Woo Hyun Shim;Sang Joon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.3
    • /
    • pp.473-485
    • /
    • 2022
  • The incidence of neurodegenerative diseases in the older population has increased in recent years. A considerable number of studies have been performed to characterize these diseases. Imaging analysis is an important biomarker for the diagnosis of neurodegenerative disease. Objective and reliable assessment and precise detection are important for the early diagnosis of neurodegenerative diseases. Artificial intelligence (AI) using brain MRI applied to the study of neurodegenerative diseases could promote early diagnosis and optimal decisions for treatment plans. MRI-based AI software have been developed and studied worldwide. Representatively, there are MRI-based volumetry and segmentation software. In this review, we present the development process of brain volumetry analysis software in neurodegenerative diseases, currently used and developed AI software for neurodegenerative disease in the Republic of Korea, probable uses of AI in the future, and AI software limitations.