• Title/Summary/Keyword: 뇌 과학기반

Search Result 87, Processing Time 0.034 seconds

Effects of a Brain-Based Evolutionary Approach Using Rapid-cycling Brassica rapa on Elementary School Students' Interests in Life Cycle of Plants ('식물의 한살이' 단원에서 속성배추를 활용한 뇌기반 진화적 접근법이 초등학생의 흥미에 미치는 영향)

  • Kim, So-Young;Lim, Chae-Seong;Kim, Sung-Ha;Hong, Juneuy
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.3
    • /
    • pp.336-347
    • /
    • 2016
  • The purpose of this study is to analyze the effects of elementary science instruction applying a Brain-Based Evolutionary (ABC-DEF) approach using Rapid-cycling Brassica rapa (RcBr) on the interests of elementary school students. For this study, two elementary school classes in Seoul and one elementary school class in Gyeonggi-do were selected. Comparison group received instruction using textbook and teacher's guidebook. A class taught using only brain-based evolutionary approach is experimental group A, and a class taught through brain-based evolutionary approach using RcBr is experimental group B. In order to analyze the quantitative differences about the interests of students, three kinds of test were administered to the students: 'Applied Unit-Related Interests', 'Follow-up Interests' and 'Interests in the observation material'. To get more information, qualitative data such as portfolios and interviews were analyzed. The major findings are as follows. First, for the test of applied unit-related interests, a statistically significant difference was found between comparison group and experimental group A, and between comparison group and experimental group B. As the results of interviews, the students have shown that the intensified exploration activities on plant in Brain-Based Evolutionary approach applied to experimental groups A and B had a positive effect. Second, for test of follow-up interests, we classified the students' follow-up interests into three types: extended-developed-deepened (EDD) type, simply expanded-maintained (SEM) type, and stopped or decreased (SD) type. Both experimental group A and experimental group B showed the highest percentage of EDD. Also, observation journal applying the evolutionary process (DEF) showed a positive effect on the students' interest. Comparison group showed the highest percentage of SEM. Third, for test of applied interests in the observation material, a statistically significant difference was found between comparison group and experimental group A, and comparison group and experimental group B. Experimental group B using RcBr showed the highest average score, while experimental group A showed a higher score than comparison group. Based on these findings, educational implications of Brain-Based Evolutionary approach and using RcBr are discussed.

Comparing Physiological Changes in Breathing Conditions during Cognitive Tasks (인지부하 환경에서 호흡방식이 생체신호의 변화에 미치는 영향)

  • Jung, Ju-Yeon;Lee, Yeong-Bae;Park, Hyeon-Mi;Kang, Chang-Ki
    • Science of Emotion and Sensibility
    • /
    • v.25 no.2
    • /
    • pp.79-86
    • /
    • 2022
  • With external air pollution forcing many people indoors, new methods of facilitating healthier indoor life are necessary. This study, therefore, investigates the effects of indoor oxygen concentration and respiration methods on biosignals and cognitive ability. The study included twenty healthy subjects who inhaled air through a mask from a gas delivery system. All subjects were asked to perform three types of breathing (nasal, oral, and oral breathing with high oxygenation) and respond to cognitive stimuli (rest close eye, rest open eye, 1-back and 2-back working memory tasks). The changes in cognitive load according to respiration were analyzed by measuring response time, accuracy, and biosignals to stimuli. The result showed that, in all three respirations, heart rate significantly increased with the increase in cognitive load. Also, in oral respiration, the airway respiration rate significantly increased according to the increase in cognitive load. The change appeared to compensate for insufficient oxygen supply in oral respiration during cognitive activity. Conversely, there was no significant change in airway respiration rate during oral respiration with a high concentration oxygen supply as in nasal respiration. This result suggests that a high concentration oxygen supply might play a role in compensating for insufficient oxygen concentration or inefficient oxygen inhalation, such as oral respiration. Based on the results of this study, a follow-up study is necessary to determine the impact of changes in the autonomic nervous system, such as stress and emotions, to find out more precise and comprehensive effects of oxygen concentration and breathing type.

Clinical Application Analysis of 3D-CRT Methods Using Tomotherapy (토모테라피를 이용한 3차원 입체 조형 치료의 임상적 적용 분석)

  • Cho, Kang-Chul;Kim, Joo-Ho;Kim, Hun-Kyum;Ahn, Seung-Kwon;Lee, Sang-Kyoo;Yoon, Jong-Won;Cho, Jeong-Hee;Lee, Jong-Seok;Yoo, Beong-Gyu
    • Journal of radiological science and technology
    • /
    • v.36 no.4
    • /
    • pp.327-335
    • /
    • 2013
  • This study investigates the case of clinical application for TomoDirect 3D-CRT(TD-3D) and TomoHelical 3D-CRT(TH-3D) with evaluating dose distribution for clinical application in each case. Treatment plans were created for 8 patients who had 3 dimensional conformal radiation therapy using TD-3D and TH-3D mode. Each patients were treated for sarcoma, CSI(craniospinal irradiaion), breast, brain, pancreas, spine metastasis, SVC syndrome and esophagus. DVH(dose volume histogram) and isodose curve were used for comparison of each treatment modality. TD-3D shows better dose distribution over the irradiation field without junction effect because TD-3D was not influenced by target length for sarcoma and CSI case. In breast case, dosimetric results of CTV, the average value of D 99%, D 95% were $49.2{\pm}0.4$ Gy, $49.9{\pm}0.4$ Gy and V 105%, V 110% were 0%, respectively. TH-3D with the dosimetric block decreased dose of normal organ in brain, pancreas, spine metastasis case. SCV syndrome also effectively decreased dose of normal organ by using dose block to the critical organs(spinal cord <38 Gy). TH-3D combined with other treatment modalities was possible to boost irradiation and was total dose was reduced to spinal cord in esophagus case(spinal cord <45 Gy, lung V 20 <20%). 3D-CRT using Tomotherapy could overcomes some dosimetric limitations, when we faced Conventional Linac based CRT and shows clinically proper dose distribution. In conclusion, 3D-CRT using Tomotherapy will be one of the effective 3D-CRT techniques.

ERF Components Patterns of Causal Question Generation during Observation of Biological Phenomena : A MEG Study (생명현상 관찰에서 나타나는 인과적 의문 생성의 ERF 특성 : MEG 연구)

  • Kwon, Suk-Won;Kwon, Yong-Ju
    • Journal of Science Education
    • /
    • v.33 no.2
    • /
    • pp.336-345
    • /
    • 2009
  • The purpose of this study is to analysis ERF components patterns of causal questions generated during the observation of biological phenomenon. First, the system that shows pictures causing causal questions based on biological phenomenon (evoked picture system) was developed in a way of cognitive psychology. The ERF patterns of causal questions based on time-series brain processing was observed using MEG. The evoked picture system was developed by R&D method consisting of scientific education experts and researchers. Tasks were classified into animal (A), microbe (M), and plant (P) tasks according to biological species and into interaction (I), all (A), and part (P) based on the interaction between different species. According to the collaboration with MEG team in the hospital of Seoul National University, the paradigm of MEG task was developed. MEG data about the generation of scientific questions in 5 female graduate student were collected. For examining the unique characteristic of causal question, MEG ERF components were analyzed. As a result, total 100 pictures were produced by evoked picture and 4 ERF components, M1(100~130ms), M2(220~280ms), M3(320~390ms), M4(460~520ms). The present study could guide personalized teaching-learning method through the application and development of scientific question learning program.

  • PDF

Filter-Bank Based Regularized Common Spatial Pattern for Classification of Motor Imagery EEG (동작 상상 EEG 분류를 위한 필터 뱅크 기반 정규화 공통 공간 패턴)

  • Park, Sang-Hoon;Kim, Ha-Young;Lee, David;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.587-594
    • /
    • 2017
  • Recently, motor imagery electroencephalogram(EEG) based Brain-Computer Interface(BCI) systems have received a significant amount of attention in various fields, including medicine and engineering. The Common Spatial Pattern(CSP) algorithm is the most commonly-used method to extract the features from motor imagery EEG. However, the CSP algorithm has limited applicability in Small-Sample Setting(SSS) situations because these situations rely on a covariance matrix. In addition, large differences in performance depend on the frequency bands that are being used. To address these problems, 4-40Hz band EEG signals are divided using nine filter-banks and Regularized CSP(R-CSP) is applied to individual frequency bands. Then, the Mutual Information-Based Individual Feature(MIBIF) algorithm is applied to the features of R-CSP for selecting discriminative features. Thereafter, selected features are used as inputs of the classifier Least Square Support Vector Machine(LS-SVM). The proposed method yielded a classification accuracy of 87.5%, 100%, 63.78%, 82.14%, and 86.11% in five subjects("aa", "al", "av", "aw", and "ay", respectively) for BCI competition III dataset IVa by using 18 channels in the vicinity of the motor area of the cerebral cortex. The proposed method improved the mean classification accuracy by 16.21%, 10.77% and 3.32% compared to the CSP, R-CSP and FBCSP, respectively The proposed method shows a particularly excellent performance in the SSS situation.

The development of a bluetooth based portable wireless EEG measurement device (블루투스 기반 휴대용 무선 EEG 측정시스템의 개발)

  • Lee, Dong-Hoon;Lee, Chung-Heon
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.16-23
    • /
    • 2010
  • Since the interest of a brain science research is increased recently, various devices using brain waves have been developed in the field of brain training game, education application and brain computer interface. In this paper, we have developed a portable EEG measurement and a bluetooth based wireless transmission device measuring brain waves from the frontal lob simply and conveniently. The low brain signals about 10~100${\mu}V$ was amplified into several volts and low pass, high pass and notch filter were designed for eliminating unwanted noise and 60Hz power noise. Also, PIC24F192 microcontroller has been used to convert analog brain signal into digital signal and transmit the signal into personal computer wirelessly. The sampling rate of 1KHz and bluetooth based wireless transmission with 38,400bps were used. The LabVIEW programing was used to receive and monitor the brain signals. The power spectrum of commercial biopac MP100 and that of a developed EEG system was compared for performance verification after the simulation signals of sine waves of $1{\mu}V$, 0~200Hz was inputed and processed by FFT transformation. As a result of comparison, the developed system showed good performance because frequency response of a developed system was similar to that of a commercial biopac MP100 inside the range of 30Hz specially.

Deformable Model using Hierarchical Resampling and Non-self-intersecting Motion (계층적 리샘플링 및 자기교차방지 운동성을 이용한 변형 모델)

  • 박주영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.11
    • /
    • pp.589-600
    • /
    • 2002
  • Deformable models offer an attractive approach for extracting three-dimensional boundary structures from volumetric images. However, conventional deformable models have three major limitations - sensitive to initial condition, difficult to represent complex boundaries with severe object concavities and protrusions, and self-intersective between model elements. This paper proposes a deformable model that is effective to extract geometrically complex boundary surfaces by improving away the limitations of conventional deformable models. First, the proposed deformable model resamples its elements hierarchically based on volume image pyramid. The hierarchical resampling overcomes sensitivity to initialization by extracting the boundaries of objects in a multiscale scheme and enhances geometric flexibility to be well adapted to complex image features by refining and regularizing the size of model elements based on voxel size. Second, the physics-based formulation of our model integrates conventional internal and external forces, as well as a non-self-intersecting force. The non-self-intersecting force effectively prevents collision or crossing over between non-neighboring model elements by pushing each other apart if they are closer than a limited distance. We show that the proposed model successively extracts the complex boundaries including severe concavities and protrusions, neither depending on initial position nor causing self-intersection, through the experiments on several computer-generated volume images and brain MR volume images.

The Efficacy of Biofeedback in Reducing Cybersickness in Virtual Navigation (생체신호 피드백을 적용한 가상 주행환경에서 사이버멀미 감소 효과)

  • 김영윤;김은남;정찬용;고희동;김현택
    • Science of Emotion and Sensibility
    • /
    • v.5 no.2
    • /
    • pp.29-34
    • /
    • 2002
  • Our previous studies investigated that narrow field of view (FOV : 50˚) and slow navigation speed decreased the frequency of occurrence and severity of cybersickness during immersion in the virtual reality (VR). It would cause a significant reduction of cybersickness if it were provided cybersickness alleviating virtual environment (CAVE) using biofeedback method whenever subject underwent physiological agitation. For verifying the hypothesis, we constructed a real-time cybersickness detection and feedback system with artificial neural network whose inputs are electrophysiological parameters of blood pulse volume, skin conductance, eye blink, skin temperature, heart period, and EEG. The system temporary provided narrow FOV and decreased speed of navigation as feedback outputs whenever physiological measures signal the occurrence of cybersickness. We examined the frequency and severity of cybersickness from simulator sickness questionnaires and self-report in 36 subjects. All subjects experienced VR two times in CAVE and non-CAVE condition at one-month intervals. The frequency and severity of cybersickness were significantly reduced in CAVE than non-CAVE condition. Virtual environment of narrow FOV and slow navigation provided by electrophysiological features based artificial neural network caused a significant reduction of cybersickness symptoms. These results showed that efficiency of a cybersickness detection system we developed was relatively high and subjects expressed more comfortable in the virtual navigation environment.

  • PDF

Comparisons of Middle-, Old-, and Stroked Old-Age Drivers' Reaction Time and Accuracy Based on Multiple Reaction Time Tasks (중다 반응시간 과제에 기반한 중년, 고령 및 뇌졸중 고령 운전자의 반응시간과 반응정확성에서의 차이 비교)

  • Lee, Jaesik;Joo, Mijung;Kim, Jung-Ho;Kim, Young-Keun;Lee, Won-Young;Ryu, Jun-Beom;Oh, Ju-Seok
    • Science of Emotion and Sensibility
    • /
    • v.20 no.1
    • /
    • pp.115-132
    • /
    • 2017
  • Differences in reaction time and accuracy were compared among driver groups of middle-, old-, and stroke old-age drivers using various reaction time tasks including simple reaction task, 2-choice task, 4-choice task with different stimuli eccentricity, search task, and moving target detection task. The results can be summarized as followings. First, although overall reaction time tended to be slowed with age and stroke, stroke old drivers showed significantly slower reaction time than the other driver groups when the stimuli were presented in a large eccentricity. Second, differences in reaction time for 2-choice task and moving target detection task seemed to be determined mainly by participants' simple reaction time. Third, the search task which required temporary retention of previously presented stimuli was found to be more sensitive in discriminating difference in reaction time between middle-age drivers and old-age drivers (including stroke old drivers). Fourth, reaction accuracy of old (and stroke old) drivers decreased when more stimuli alternatives were presented and temporary retention for stimuli was required. Altogether, memory demand in reaction time task can be sensitive to evaluate performance for different age groups, whereas size of useful field of view for brain stroke.

The effect of brain education-based exercise and KPEM manual therapy integrated program on sleep and quality of life in cancer patients (뇌교육 기반 운동 및 KPEM도수치료 통합 프로그램이 암환자의 수면과 삶의 질에 미치는 영향)

  • Byeong Kwan Kim;Min Gyu Sung;Hyun Jung Yang
    • Journal of Korean Physical Therapy Science
    • /
    • v.30 no.1
    • /
    • pp.10-22
    • /
    • 2023
  • Background: The purpose of this study was to investigate the effect of brain education-based exercise and KPEM manual therapy integrated program on the sleep and quality of life of cancer patients. Design: Seventy subjects who were diagnosed with cancer and were undergoing treatment volunteered to participate in this study. All subjects used a nonequivalent control group pretest-posttest design for either the experimental group or the control group. In the final analysis, there were 25 subjects in the experimental group and 18 subjects in the control group. Methods: For 12 weeks, the experimental group performed brain education-based exercise (20 minutes) and KPEM manual therapy (50 minutes), and the control group performed basic physical therapy and autonomous exercise. For evaluation, the Korean version of the Pittsburgh Sleep Quality Index (PSQI-K) and the quality of life index were measured after intervention using the European Organization for Research and Treatment of Cancer (EORTC-3.0Ver). Effect between groups, time effect over time, and group*time interaction were analyzed through a pre-test before and after the 12-week intervention period, and repeated measure ANOVA after 12 weeks of the integrated program intervention. All statistical significance levels were set at α=.05. Results: The PSQI in the time effect (p=.001) and the group*time interaction (p<.001) were statistically significant. In terms of EORTC, QL2 and PF2 were significant in time effect (p=.024; p=.021) and group*time interaction (p=.007; p=.021), whereas in RF2, significance was only found in group*time interaction (p=.028). In symptom indicators, time effect was the only significant factor in FA, SL, AP, and CO, respectively (p=.002; p=.028; p=.041; p =.005) and in DY, there were significant differences in the time effect (p=.016) and group*time interaction (p=.002). Conclusion: The brain education-based exercise and KPEM manual therapy integrated program effectively improves the sleep and quality of life of cancer patients. It is considered that this exercise and therapy can be actively used as a psychological, emotional, and physically complementary physical therapy intervention to improve the quality of life of cancer patients.