• Title/Summary/Keyword: 뇌영역

Search Result 499, Processing Time 0.032 seconds

The Noise Performance of Diffusion Tensor Image with Different Gradient Schemes (확산 텐서 영상에서 확산 경사자장의 방향수에 따른 잡음 분석)

  • Lee Young-Joo;Chang Yongmin;Kim Yong-Sun
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.439-445
    • /
    • 2004
  • Diffusion tensor image(DTI) exploits the random diffusional motion of water molecules. This method is useful for the characterization of the architecture of tissues. In some tissues, such as muscle or cerebral white matter, cellular arrangement shows a strongly preferred direction of water diffusion, i.e., the diffusion is anisotropic. The degree of anisotropy is often represented using diffusion anisotropy indices (relative anisotropy(RA), fractional anisotropy(FA), volume ratio(VR)). In this study, FA images were obtained using different gradient schemes(N=6, 11, 23, 35. 47). Mean values and the standard deviations of FA were then measured at several anatomic locations for each scheme. The results showed that both mean values and the standard deviations of FA were decreased as the number of gradient directions were increased. Also, the standard error of ADC measurement decreased as the number of diffusion gradient directions increased. In conclusion, different gradient schemes showed a significantly different noise performance and the schem with more gradient directions clearly improved the quality of the FA images. But considering acquisition time of image and standard deviation of FA, 23 gradient directions is clinically optimal.

Policy and Strategy for Intelligence Information Education and Technology (지능정보 교육과 기술 지원 정책 및 전략)

  • Lee, Tae-Gyu;Jung, Dae-Chul;Kim, Yong-Kab
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.8
    • /
    • pp.359-368
    • /
    • 2017
  • What is the term "intelligence information society", which is a term that has been continuously discussed recently? This means that the automation beyond the limits of human ability in the whole societies based on intelligent information technology is a universalized social future. In particular, it is a concept that minimizes human intervention and continuously pursues evolution to data (or big data) -based automation. For example, autonomous automation is constantly aiming at unmanned vehicles with artificial intelligence as a key element. However, until now, intelligent information research has focused on the intelligence itself and has made an effort to improve intelligence logic and replace human brain and intelligence. On the other hand, in order to replace the human labor force, we have continued to make efforts to replace workers with robots by analyzing the working principles of workers and developing optimized simple logic. This study proposes important strategies and directions to implement intelligent information education policy and intelligent information technology research strategy by suggesting access strategy, education method and detailed policy road map for intelligent information technology research strategy and educational service. In particular, we propose a phased approach to intelligent information education such as basic intelligence education, intelligent content education, and intelligent application education. In addition, we propose education policy plan for the improvement of intelligent information technology, intelligent education contents, and intelligent education system as an important factor for success and failure of the 4th industrial revolution, which is centered on intelligence and automation.

Development of RGBW Dimming Control Sensitivity Lighting System based on the Intelligence Algorithm (지능형 알고리즘 기반 RGBW Dimming control LED 감성조명 시스템 개발)

  • Oh, Sung-Kwun;Lim, Sung-Joon;Ma, Chang-Min;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.359-364
    • /
    • 2011
  • The study uses department of the sensitivity and fuzzy reasoning, one of artificial intelligence algorithms, so that develop LED lighting system based on fuzzy reasoning for systematical control of the LED color temperature. In the area of sensitivity engineering, by considering the relation between color and emotion expressed as an adjective word, the corresponding sensitivity word can be determined, By taking into consideration the relation between the brain wave measured from the human brain and the color temperature, the preferred lesson subject can be determined. From the decision of the sensitivity word and the lesson subject, we adjust the color temperature of RGB (Red, Green, Blue) LED. In addition, by using the information of the latitude and the longitude from GPS(Global Positioning System), we can calculate the on-line moving altitude of sun. By using the sensor information of both temperature and humidity, we can calculate the discomfort index. By considering the altitude of sun as well as the value of the discomfort index, the illumination of W(white) LED and the color temperature of RGB LED can be determined. The (LED) sensitivity lighting control system is bulit up by considering the sensitivity word, the lesson subject, the altitude of sun, and the discomfort index The developed sensitivity lighting control system leads to more suitable atmosphere and also the enhancement of the efficiency of lesson subjects as well as business affairs.

A Patient Diagnosed with Spinocerebellar Ataxia Type 5 associated with SPTBN2: Case Report (SPTBN2와 연관된 spinocerebellar ataxia type 5를 진단받은 환자)

  • Hur, Min woo;Ko, Ara;Lee, Hyun Joo;Lee, Jin Sung;Kang, Hoon-Chul
    • Journal of the Korean Child Neurology Society
    • /
    • v.25 no.3
    • /
    • pp.200-203
    • /
    • 2017
  • Spinocerebellar ataxias (SCAs) are autosomal dominant neurodegenerative disorders which disrupt the afferent and efferent pathways of the cerebellum that cause cerebellar ataxia. Spectrin beta non-erythrocytic 2 (SPTBN2) gene encodes the ${\beta}-III$ spectrin protein with high expression in Purkinje cells that is involved in excitatory glutamate signaling through stabilization of the glutamate transporter, and its mutation is known to cause spinocerebellar ataxia type 5. Three years and 5 months old boy with delayed development showed leukodystrophy and cerebellar atrophy in brain magnetic resonance imaging (MRI). Diagnostic exome sequencing revealed that the patient has heterozygous mutation in SPTBN2 (p.Glu1251Gln) which is a causative genetic mutation for spinocerebellar ataxia type 5. With the patient's clinical findings, it seems reasonable to conclude that p.Glu1251Gln mutation of SPTBN2 gene caused spinocerebellar ataxia type 5 in this patient.

Smoking-Induced Dopamine Release Studied with $[^{11}C]Raclopride$ PET ($[^{11}C]Raclopride$ PET을 이용한 흡연에 의한 도파민 유리 영상 연구)

  • Kim, Yu-Kyeong;Cho, Sang-Soo;Lee, Do-Hoon;Ryu, Hye-Jung;Lee, Eun-Ju;Ryu, Chang-Hung;Jeong, In-Soon;Hong, Soo-Kyung;Lee, Jae-Sung;Seo, Hong-Gwan;Jeong, Jae-Min;Lee, Won-Woo;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.421-429
    • /
    • 2005
  • Purpose: It has been postulated that dopamine release in the striatum underlies the reinforcing properties of nicotine. Substantial evidence in the animal studies demonstrates that nicotine interacts with dopaminergic neuron and regulates the activation of the dopaminergic system. The aim of this study was to visualize the dopamine release by smoking in human brain using PET scan with $[^{11}C]raclopride$. Materials and Methods: Five male non-smokers or ex-smokers with an abstinence period longer than 1 year (mean age of $24.4{\pm}1.7$ years) were enrolled in this study $[^{11}C]raclopride$, a dopamine D2 receptor radioligand, was administrated with bolus-plus-constant infusion. Dynamic PET was performed during 120 minutes ($3{\times}20s,\;2{\times}60s,\;2{\times}120s,\;1{\times}180s\;and\;22{\times}300s$). following the 50 minute-scanning, subjects smoked a cigarette containing 1 mg of nicotine while in the scanner. Blood samples for the measurement of plasma nicotine level were collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, and 90 minute after smoking. Regions for striatal structures were drawn on the coronal summed PET images guided with co-registered MRI. Binding potential, calculated as (striatal-cerebellar)/cerebellar activity, was measured under equilibrium condition at baseline and smoking session. Results: The mean decrease in binding potential of $[^{11}C]raclopride$ between the baseline and smoking in caudate head, anterior putamen and ventral striatum was 4.7%, 4.0% and 7.8%, respectively. This indicated the striatal dopamine release by smoking. Of these, the reduction in binding potential in the ventral striatum was significantly correlated with the cumulated plasma level of the nicotine (Spearman's rho=0.9, p=0.04). Conclusion: These data demonstrate that in vivo imaging with $[^{11}C]raclopride$ PET could measure nicotine-induced dopamine release in the human brain, which has a significant positive correlation with the amount or nicotine administered bt smoking.

Evidence of Cortical Reorganization in a Monoparetic Patient with Cerebral Palsy Detected by Combined Functional MRI and TMS

  • Kwon, Yong-Hyun;Jang, Sung-Ho;Lee, Mi-Young;Byun, Woo-Mok;Cho, Yoon-Woo;Ahn, Sang-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.22 no.1
    • /
    • pp.96-103
    • /
    • 2005
  • The motor recovery mechanism of a 21-year-old male monoparetic patient with cerebral palsy, who had complained of a mild weakness on his right hand since infancy, was examined using functional Magnetic Resonance Imaging (fMRI) and Transcranial Magnetic Stimulation (TMS). The patient showed mild motor impairment on the right hand. MRI located the main lesion on the left precentral knob of the brain. fMRI was performed on this patient as well as 8 control subjects using the Blood Oxygen Level Dependent technique at 1.5 T with a standard head coil. The motor activation task consisted of finger flexionextension exercises at 1 Hz cycles. TMS was carried out using a round coil. The anterior portion of the coil was applied tangentially to the scalp at a 1.0 cm separation. Magnetic stimulation was carried out with the maximal output. The Motor Evoked Potentials (MEPs) from both Abductor Pollicis Brevis muscles (APB) were obtained simultaneously. fMRI revealed that the unaffected (right) primary sensori-motor cortex (SM1), which was centered on precentral knob, was activated by the hand movements of the control subjects as well as by the unaffected (left) hand movements of the patient. However, the affected(right) hand movements of the patient activated the medial portion of the injured precentral knob of the left SM1. The optimal scalp site for the affected (right) APB was located at 1 cm medial to that of the unaffected (left) APB. When the optimal scalp site was stimulated, the MEP characteristics from the affected (right) APB showed a delayed latency, lower amplitude, and a distorted figure compared with that of the unaffected (left) APB. Therefore, the motor function of the affected (right) hand was shown to be reorganized in the medial portion of the injured precentral knob.

  • PDF

ERF Components Patterns of Causal Question Generation during Observation of Biological Phenomena : A MEG Study (생명현상 관찰에서 나타나는 인과적 의문 생성의 ERF 특성 : MEG 연구)

  • Kwon, Suk-Won;Kwon, Yong-Ju
    • Journal of Science Education
    • /
    • v.33 no.2
    • /
    • pp.336-345
    • /
    • 2009
  • The purpose of this study is to analysis ERF components patterns of causal questions generated during the observation of biological phenomenon. First, the system that shows pictures causing causal questions based on biological phenomenon (evoked picture system) was developed in a way of cognitive psychology. The ERF patterns of causal questions based on time-series brain processing was observed using MEG. The evoked picture system was developed by R&D method consisting of scientific education experts and researchers. Tasks were classified into animal (A), microbe (M), and plant (P) tasks according to biological species and into interaction (I), all (A), and part (P) based on the interaction between different species. According to the collaboration with MEG team in the hospital of Seoul National University, the paradigm of MEG task was developed. MEG data about the generation of scientific questions in 5 female graduate student were collected. For examining the unique characteristic of causal question, MEG ERF components were analyzed. As a result, total 100 pictures were produced by evoked picture and 4 ERF components, M1(100~130ms), M2(220~280ms), M3(320~390ms), M4(460~520ms). The present study could guide personalized teaching-learning method through the application and development of scientific question learning program.

  • PDF

Comparison of using CBCT with CT Simulator for Radiation dose of Treatment Planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Kim, Dae-Young;Choi, Ji-Won;Cho, Jung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.742-749
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

A Review of the Neurocognitive Mechanisms for Mathematical Thinking Ability (수학적 사고력에 관한 인지신경학적 연구 개관)

  • Kim, Yon Mi
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.2
    • /
    • pp.159-219
    • /
    • 2016
  • Mathematical ability is important for academic achievement and technological renovations in the STEM disciplines. This study concentrated on the relationship between neural basis of mathematical cognition and its mechanisms. These cognitive functions include domain specific abilities such as numerical skills and visuospatial abilities, as well as domain general abilities which include language, long term memory, and working memory capacity. Individuals can perform higher cognitive functions such as abstract thinking and reasoning based on these basic cognitive functions. The next topic covered in this study is about individual differences in mathematical abilities. Neural efficiency theory was incorporated in this study to view mathematical talent. According to the theory, a person with mathematical talent uses his or her brain more efficiently than the effortful endeavour of the average human being. Mathematically gifted students show different brain activities when compared to average students. Interhemispheric and intrahemispheric connectivities are enhanced in those students, particularly in the right brain along fronto-parietal longitudinal fasciculus. The third topic deals with growth and development in mathematical capacity. As individuals mature, practice mathematical skills, and gain knowledge, such changes are reflected in cortical activation, which include changes in the activation level, redistribution, and reorganization in the supporting cortex. Among these, reorganization can be related to neural plasticity. Neural plasticity was observed in professional mathematicians and children with mathematical learning disabilities. Last topic is about mathematical creativity viewed from Neural Darwinism. When the brain is faced with a novel problem, it needs to collect all of the necessary concepts(knowledge) from long term memory, make multitudes of connections, and test which ones have the highest probability in helping solve the unusual problem. Having followed the above brain modifying steps, once the brain finally finds the correct response to the novel problem, the final response comes as a form of inspiration. For a novice, the first step of acquisition of knowledge structure is the most important. However, as expertise increases, the latter two stages of making connections and selection become more important.

Comparison of using CBCT with CT simulator for radiation dose of treatment planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Cho, jung-keun;Kim, dae-young;Han, tae-jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1159-1166
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

  • PDF