Smoking-Induced Dopamine Release Studied with $[^{11}C]Raclopride$ PET

$[^{11}C]Raclopride$ PET을 이용한 흡연에 의한 도파민 유리 영상 연구

  • Kim, Yu-Kyeong (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Cho, Sang-Soo (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Do-Hoon (Center for Clinical Services, Research Institute and Hospital, National Cancer Center) ;
  • Ryu, Hye-Jung (Center for Clinical Services, Research Institute and Hospital, National Cancer Center) ;
  • Lee, Eun-Ju (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Ryu, Chang-Hung (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Jeong, In-Soon (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Hong, Soo-Kyung (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Jae-Sung (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Seo, Hong-Gwan (Center for Cancer Prevention, Research Institute and Hospital, National Cancer Center) ;
  • Jeong, Jae-Min (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Won-Woo (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Kim, Sang-Eun (Department of Nuclear Medicine, Seoul National University College of Medicine)
  • 김유경 (서울대학교 의과대학 핵의학교실) ;
  • 조상수 (서울대학교 의과대학 핵의학교실) ;
  • 이도훈 (국립 암센터 진료지원센터) ;
  • 류혜정 (국립 암센터 진료지원센터) ;
  • 이은주 (서울대학교 의과대학 핵의학교실) ;
  • 류창형 (서울대학교 의과대학 핵의학교실) ;
  • 정인순 (서울대학교 의과대학 핵의학교실) ;
  • 홍수경 (서울대학교 의과대학 핵의학교실) ;
  • 이재성 (서울대학교 의과대학 핵의학교실) ;
  • 서홍관 (국립 암센터 암예방검진센터) ;
  • 정재민 (서울대학교 의과대학 핵의학교실) ;
  • 이원우 (서울대학교 의과대학 핵의학교실) ;
  • 김상은 (서울대학교 의과대학 핵의학교실)
  • Published : 2005.12.31

Abstract

Purpose: It has been postulated that dopamine release in the striatum underlies the reinforcing properties of nicotine. Substantial evidence in the animal studies demonstrates that nicotine interacts with dopaminergic neuron and regulates the activation of the dopaminergic system. The aim of this study was to visualize the dopamine release by smoking in human brain using PET scan with $[^{11}C]raclopride$. Materials and Methods: Five male non-smokers or ex-smokers with an abstinence period longer than 1 year (mean age of $24.4{\pm}1.7$ years) were enrolled in this study $[^{11}C]raclopride$, a dopamine D2 receptor radioligand, was administrated with bolus-plus-constant infusion. Dynamic PET was performed during 120 minutes ($3{\times}20s,\;2{\times}60s,\;2{\times}120s,\;1{\times}180s\;and\;22{\times}300s$). following the 50 minute-scanning, subjects smoked a cigarette containing 1 mg of nicotine while in the scanner. Blood samples for the measurement of plasma nicotine level were collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, and 90 minute after smoking. Regions for striatal structures were drawn on the coronal summed PET images guided with co-registered MRI. Binding potential, calculated as (striatal-cerebellar)/cerebellar activity, was measured under equilibrium condition at baseline and smoking session. Results: The mean decrease in binding potential of $[^{11}C]raclopride$ between the baseline and smoking in caudate head, anterior putamen and ventral striatum was 4.7%, 4.0% and 7.8%, respectively. This indicated the striatal dopamine release by smoking. Of these, the reduction in binding potential in the ventral striatum was significantly correlated with the cumulated plasma level of the nicotine (Spearman's rho=0.9, p=0.04). Conclusion: These data demonstrate that in vivo imaging with $[^{11}C]raclopride$ PET could measure nicotine-induced dopamine release in the human brain, which has a significant positive correlation with the amount or nicotine administered bt smoking.

목적: 흡연에 보상 강화 효과는 흡연 시에 담배 내에 포함되어 있는 니코틴 성분에 의한 선조체에서의 도파민 유리가 중심 역할을 할 것으로 생각된다. 지금까지의 여러 동물실험 에서 니코틴과 도파민의 상호 관계와 니코틴에 의한 도파민 유리가 연구되었다. 이 연구에서는 $[^{11}C]raclopride$ PET을 이용하여 생체에서 흡연에 의한 도파민 유리를 영상화 하고자 하였다. 대상 및 방법: 비흡연자이거나 과거 흡연력이 있으나 1년 이상의 금연을 시행한 5 명의 정상인 남자를 대상으로 하였고, 이들의 평균 연령은 24세 이었다. 도파민 D2 수용체 영상을 위한 방사성 리간드인 $[^{11}C]raclopride$를 볼루스+연속 주입법에 의하여 주사하면서 120 분간 30개의 동적 영상($3{\times}20$초, $2{\times}60$초, $2{\times}120$초, $1{\times}180$초, $22{\times}300$초)을 얻었다. 영상 촬영 시작 50분에 니코틴 함량 1mg의 담배를 피도록 하였으며, 담배를 피우기 직전과 흡연시작 5분 후부터 흡연에 의하여 흡수된 혈중 니코틴 농도를 측정하기 위하여 일정 간격으로 정맥혈 샘플을 획득하였다. 30 개의 프레임은 인접 프레임과의 정합에 의하여 움직임을 보정하였고, 움직임이 보정된 120분 간의 동적 영상을 합하여 평균 영상을 만든 다음, 뇌 MRI와 공간 정합을 하였다. 평균 영상과 MRI 의 공간 정합 정보를 이용하여, 각 프레임을 MRI 에 공간 정합시켜, 공간 정합된 동적 영상에서 선조체에 MRI 정보를 이용하여 좌우 각각 3 개의 관심 영역(ventral striatum : VST, precomissural dorsal caudate; caudate nucleus; precommissural putamen; anterior putamen)과 소뇌에 관심영역을 설정하였고, 동적 영상으로부터 각 관심 영역 별로 시간-농도 곡선을 구하였다. $[^{11}C]raclopride$주사 후 선조체에서의 리간드 특이적 결합에 의한 항정상태(statedy state) 에 도달한 후 흡연전 평형 상태(equilibrium state)인 30-50 분과 흡연 후 재평형에 도달한 70-90분 영상에서 각 관심 영역에서의 방사성 농도를 구하였고, 조직비 방법에 근거하여 기저상태 및 흡연 상태의 방사성 리간드의 수용체 결합능 (binding potential;BP)을 구하였다($BP=C_{ROI}/C_{cerebellum}-1$). 흡연에 의한 도파민의 유리는 흡연 전후의 $[^{11}C]raclopride$의 수용체 결합능의 변화율로 계산하였다. 흡연에 의한 혈중 니코틴의 상승은 흡연후 90 분간의 혈중 니코틴의 축적 농도로 계산되었으며, 흡연에 의한 $[^{11}C]raclopride$의 수용체 결합능의 감소율과 혈중 니코틴의 축적 농도와의 상관관계를 스피어만 상관분석법(Spearman's correlation)에 의하여 알아보았다. 결과: 흡연에 의한 선조체에서의 평균 $[^{11}C]raclopride$의 수용체 결합능의 변화는 미상핵에서 4.7%, 전피각에서 4.0%, 복측 선조체에서 7.8% 의 감소를 보여 흡연에 의한 선조체내 도파민 유리를 정량화 하였다. 특히 선조체에서의 도파민 유리에 의한 수용체 결합능의 감소는 흡연에 의한 혈중 니코틴의 축적 농도와 양의 상관관계를 보였다(rho=0.9, p=0.04). 결론: $[^{11}C]raclopride$ PET을 이용하여 비흡연 정상인에서 흡연에 의한 도파민 유리를 영상화 및 정량화 하였고, 흡연에 의한 선조체내 도파민 유리는 흡연시 흡수된 니코틴의 축적 농도와 상관관계를 가짐을 보였다. 이 연구에서의 확립된 방법과 결과는 앞으로 흡연자에서 니코틴에 의한 도파민 신경계의 활성화 연구에 기여할 것이다.

Keywords

References

  1. Domino EF. Tobacco smoking and nicotine neuropsychopharmacology:some future research directions. Neuropsychopharmacology 1998;18:456-68 https://doi.org/10.1016/S0893-133X(97)00193-0
  2. Dani JA, Heinemann S. Molecular and cellular aspects of nicotine abuse. Neuron 1996;16:905-8 https://doi.org/10.1016/S0896-6273(00)80112-9
  3. Di Chiara G. Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 2000;393:295-314 https://doi.org/10.1016/S0014-2999(00)00122-9
  4. Mereu G, Yoon KW, Boi V, Gessa GL, Naes L, Westfall TC. Preferential stimulation of ventral tegmental area dopaminergic neurons by nicotine. Eur J Pharmacol 1987;141:395-9 https://doi.org/10.1016/0014-2999(87)90556-5
  5. Nisell M, Nomikos GG, Svensson TH. Nicotine dependence, midbrain dopamine systems and psychiatric disorders. Pharmacol Toxicol 1995;76:157-62 https://doi.org/10.1111/j.1600-0773.1995.tb00123.x
  6. Corrigall WA, Coen KM, Adamson KL. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 1994;653:278-84 https://doi.org/10.1016/0006-8993(94)90401-4
  7. Yoshida M, Yokoo H, Tanaka T, Mizoguchi K, Emoto H, Ishii H, et al. Facilitatory modulation of mesolimbic dopamine neuronal activity by a mu-opioid agonist and nicotine as examined with in vivo microdialysis. Brain Res 1993;624:277-80 https://doi.org/10.1016/0006-8993(93)90087-4
  8. Nisell M, Nomikos GG, Svensson TH. Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 1994;16:36-44 https://doi.org/10.1002/syn.890160105
  9. Pontieri FE, Tanda G, Orzi F, Di Chiara G. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 1996;382:255-7 https://doi.org/10.1038/382255a0
  10. Dewey SL, Brodie JD, Gerasimov M, Horan B, Gardner EL, Ashby CR Jr. A pharmacologic strategy for the treatment of nicotine addiction. Synapse 1999;31:76-86 https://doi.org/10.1002/(SICI)1098-2396(199901)31:1<76::AID-SYN10>3.0.CO;2-Y
  11. Corrigall WA. Nicotine self-administration in animlas as a depedent model. Nicotine Tob. Res 1999;1:11-20 https://doi.org/10.1080/14622299050011121
  12. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, et al. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 1998;391:173-7 https://doi.org/10.1038/34413
  13. Hartvig P, Torstenson R, Tedroff J, Watanabe Y, Fasth KJ, Bjurling P, et al. Amphetamine effects on dopamine release and synthesis rate studied in the Rhesus monkey brain by positron emission tomography. J Neural Transm 1997;104:329-39 https://doi.org/10.1007/BF01277655
  14. Drevets WC, Price JC, Kupfer DJ, Kinahan PE, Lopresti B, Holt D, et al. PET measures of amphetamine-induced dopamine release in ventral versus dorsal striatum. Neuropsychopharmacology 1999;21:694-709 https://doi.org/10.1016/S0893-133X(99)00079-2
  15. AA, et al. Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 2001;49:81-96 https://doi.org/10.1016/S0006-3223(00)01038-6
  16. Martinez D, Slifstein M, Broft A, Mawlawi O, Hwang DR, Huang Y, et al. Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab 2003;23:285-300 https://doi.org/10.1038/sj.bmt.1701762
  17. Cumming P, Gjedde A. Nicotine-induced reduction of $[^{11}C]$ raclopride in pig striatum. J Cereb Blood Flow Metab 2001;21(suppl1):S111
  18. Tsukada H, Miyasato K, Kakiuchi T, Nishiyama S, Harada M, Domino EF. Comparative effects of methamphetamine and nicotine on the striatal $[^{11}C]$ raclopride binding in unanesthetized monkeys. Synapse 2002;45:207-12 https://doi.org/10.1002/syn.10102
  19. Brody AL, Olmstead RE, London ED, Farahi J, Meyer JH, Grossman P, et al. Smoking-induced ventral striatum dopamine release. Am J Psychiatry 2004;161:1211-8 https://doi.org/10.1176/appi.ajp.161.7.1211
  20. Barrett SP, Boileau I, Okker J, Pihl RO, Dagher A. The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and $[^{11}C]$raclopride. Synapse 2004;54:65-71 https://doi.org/10.1002/syn.20066
  21. Tiffany ST, Drobes DJ. The development and initial validation of a questionnaire on smoking urges. Br J Addict 1991;86:1467-76 https://doi.org/10.1111/j.1360-0443.1991.tb01732.x
  22. Watabe H, Endres CJ, Breier A, Schmall B, Eckelman WC, Carson RE. Measurement of dopamine release with continuous infusion of [11C]raclopride: optimization and signal-to-noise considerations. J Nucl Med 2000;41:522-30
  23. Mawlawi O, Martinez D, Slifstein M, Broft A, Chatterjee R, Hwang DR, et al. Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab 2001;21:1034-57 https://doi.org/10.1097/00004647-200109000-00002
  24. Endres CJ, Carson RE. Assessment of dynamic neurotransmitter changes with bolus or infusion delivery of neuroreceptor ligands. J Cereb Blood Flow Metab 1998;18:1196-210 https://doi.org/10.1097/00004647-199811000-00006
  25. Ito H, Hietala J, Blomqvist G, Halldin C, Farde L. Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of$[^{11}C]$ raclopride binding. J Cereb Blood Flow Metab 1998;18:941-50 https://doi.org/10.1097/00004647-199809000-00003
  26. Carson RE, Breier A, De Bartolomeis A, Saudners RC, Su TP, Schmall B, et al. Quantification of amphetamine-induced changes in $[^{11}C]$ raclopride binding with cintinous infusion. J Cereb Blood Flow Metab 1997;17:437-47 https://doi.org/10.1097/00004647-199704000-00009
  27. Laurelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: A critical review. J Cereb Blood Flow Metab 2000;20:423-51 https://doi.org/10.1097/00004647-200003000-00001
  28. Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Hitzemann R, et al. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 1997;24:386:830-3 https://doi.org/10.1038/386830a0
  29. Fadda P, Scherma M, Fresu A, Collu M, Fratta W. Baclofen antagonizes nicotine-, cocaine-, and morphine-induced dopamine release in the nucleus accumbens of rat. Synapse 2003;50:1-6 https://doi.org/10.1002/syn.10238
  30. Marenco S, Carson RE, Berman KF, Herscovitch P, Weinberger DR. Nicotine-induced dopamine release in primates measured with $[^{11}C]$raclopride PET. Neuropsychopharmacology 2004;29:259-68 https://doi.org/10.1038/sj.npp.1300287
  31. Pidoplichko VI, DeBiasi M, Williams JT, Dani JA. Nicotine activates and desensitizes midbrain dopamine neurons. Nature 1997;390:401-4 https://doi.org/10.1038/37120
  32. Zhou FM, Liang Y, Dani JA. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 2001;4:1224-1229 https://doi.org/10.1038/nn769
  33. Dani JA, Ji D, Zhou FM. Synaptic plasticity and nicotine addiction. Neuron 2001;16:349-52
  34. Silvestri S, Negrete JC, Seeman MV, Shammi CM, Seeman P. Does nicotine affect D2 receptor upregulation? A case-control study. Acta Psychiatr Scand 2004;109:313-7 https://doi.org/10.1111/j.1600-0447.2004.00293.x
  35. Rice ME, Cragg SJ. Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci 2004;7:583-4 https://doi.org/10.1038/nn1244