• Title/Summary/Keyword: 뇌세포독성

Search Result 9, Processing Time 0.028 seconds

Study on the effect of Buthus martensi Karsch extract on thrombosis and brian damage (전갈(全蝎) 추출물(抽出物)이 혈전증(血栓症), 전뇌허혈(全腦虛血) 및 뇌세포독성(腦細胞毒性)에 미치는 영향(影響))

  • Baek, Myung-Hyun;Hwang, Yong-Geun;Jeong, Ji-Cheon;Kang, Jeong-Jun;Kim, Sung-Hoon
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.8 no.1
    • /
    • pp.171-190
    • /
    • 1999
  • This following is effect of Buthus martensi Karsch(BMK) extract on dextran-thrombus model, KCN-induced coma, cytotoxicity of brain etc. BMK extract significantly increased number of platelet and fibrogen and significantly shortened the prothrombin time as compared with control group treated with dextran. BMK extract didn't affect the changes of hematocrit as compared with control group treated with dextran. BMK extract induced a significant inhibition of human platelet aggregation induced by thrombin and ADP but did not affect human platelet aggregation induced by collagen. BMK extract showed a protective effect on pulmonary thrombosis induced by collagen and epinephrine. BMK extract prolonged the duration of KCN-induced coma and showed a protective effect on cytotoxicity of PC12 cells induced by amyloid ${\beta}$ protein(25-35) in a dose dependent manner. These results suggested that BMK extract might be usefully applied for prevention and treatment of thrombosis and brain damage.

  • PDF

Effects of Allium hookeri Extracts on Glutamate-induced Neurotoxicity in HT22 Cells (글루타메이트로 유발한 세포독성에 대한 삼채추출물의 뇌세포 보호 효과)

  • Kim, Ji-Yun;Ko, Wonmin;Kim, Ae-Jung
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • Glutamate-induced oxidative stress results in neuro-degenerative disorders in many central nervous system (CNS) such as Alzheimer's disease, ischemia, Huntington's disease, and Parkinson's disease. Our study was performed to investigate neuroprotective effects of Allium hookeri extracts (leaf, root, and whole) on glutamate-induced HT22 cells. In this study, ethanol extract of A. hookeri showed the outstanding neuroprotective effect in HT22 cells. In addition, we found that ethanol extract of A. hookeri root increased heme oxygenase (HO)-1 in HT22 cells. Moreover, ethanol extract of A. hookeri root also upregulated nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2) in HT22 cells. These results demonstrate that ethanol extract of A. hookeri root contributes neuroprotective effects against glutamate-induced oxidative stress in HT22 cells, via Nrf2-mediated HO-1 expression. Our study suggests that ethanol extract of A. hookeri root could be the potential agent for the treatment of many neuro-degenerative diseases.

Antioxidant Properties and Protective Effects of Inula britannica var. chinensis Regel on Oxidative Stress-induced Neuronal Cell Damage (금불초 추출물의 항산화 효과 및 산화 스트레스에 대한 신경세포 보호작용)

  • Lee, Na-Hyun;Hong, Jung-Il;Kim, Jin-Yung;Chiang, Mae-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.87-92
    • /
    • 2009
  • The antioxidant properties and protective effects of Inula britannica on ${H_2}{O_2}$-induced SH-SY5Y neuroblastoma cell damage were investigated. A series of solvent fractions, including hexane(Fr.H), petroleum ether, chloroform, ethyl acetate(Fr.EA), and water fraction(Fr.W), were prepared from the 70% methanol extracts of Inula britannica. Fr.W had the highest total contents of phenolics and flavonoids, followed by Fr.EA. The antioxidant properties of the fractions were also evaluated by analyzing their scavenging activities on 1,1-diphenyl-2-picrylhydrazyl(DPPH) radicals, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, and nitric oxide. Fr.W showed the strongest activities in all assays. The concentrations of Fr.W that resulted in 50% reductions of the DPPH and ABTS radicals were 20.7 ${\mu}g$/mL and 39.4 ${\mu}g$/mL, respectively. Fr.W showed the weakest cytotoxic activities on the SH-SY5Y cells, whereas it effectively protected ${H_2}{O_2}$-induced cell death, increasing cell survival by 35.0-77.0% at a concentration range of 62.5-250 ${\mu}g$/mL. In this range, Fr.W also significantly decreased intracellular ROS levels by 34-39%. Overall, the antioxidant properties of Inula britannica can contribute to rescuring neuronal cells from oxidative stress-induced cell injury.

Effects of Bombusae concretio Salicea on $Amyloid-{\beta}$-induced Neuronal Cell Toxicity and Lipid Peroxidation in Cultured Rat Astrocytes (흰쥐 astrocyte에 있어서 $amyloid-{\beta}$에 의한 독성과 지질과산화에 미치는 천축황(天竺黃)의 영향)

  • Lee Woo-Heon;Jeong Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.381-391
    • /
    • 1998
  • The present study was done to investigate the effects of Bombusae concretio Salicea (BCS) on cultured astrocyte cell system and lipid peroxidation in $A{\beta}25-35$ treatment conditions. Cell killing was significantly enhanced by addition of increasing concentrations of $A{\beta}25-35$. Pretreatment of BCS attenuated in cell killing enhanced by increasing concentrations of $A{\beta}25-35$. MDA level induced by $A{\beta}25-35$ treatment was significantly increased and the level was slightly reduced by pretreatment of BCS. The present study showed that $A{\beta}25-35$ strongly increased MDA level and the level was enhanced by addition of increasing concentrations of In conclusion, it was shown that $A{\beta}25-35$ is not only potent lipid peroxide inducer, but also cause protection of neurodegeneration induced by $A{\beta}25-35$. It can be concluded that the activation of antioxidative enzymes may be related to the inhibition of lipid peroxidative reactions. We cannot fully explain to effects of BCS at present; however, the ability of BCS to reduce cell killing and MDA level induced by $A{\beta}25-35$ suggest that BCS may be a protective agent for free radical generating compounds such as $A{\beta}25-35$.

  • PDF

Protective Effect against Neuronal Cell and Inhibitory Activity against Bacteria of Mulberry Fruit Extracts (오디 추출물의 신경세포 보호활성 및 항균활성)

  • Kim Hyun-Bok;Kim Sun-Yeou;Lee Hang-Young;Kim Sun-Lim;Kang Seok-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.220-223
    • /
    • 2005
  • As functional evaluation of mulberry fruits extracts, the protective effect on cerebral cell and antibacterial activities were carried. $1\%$ HCl-MeOH extract showed $37\%$ cytoprotective effect on hydrogen peroxide, also C3G identified mulberry fruits and cyanidin showed $52\%,\;76\%$, respectively, protective effects on oxygen-glucose deprivation (OGD). In the antibacterial activity of mulberry fruit extracts, MeOB-Cheongil extract showed the highest inhibitory activity. Salmonella typhimurium was shown inhibitory rate more than $70\%$ in all treatment groups. Also Klebsiella pneumoniae was shown inhibitory activity in all treatment groups.

Functional characterization of domestic and foreign green tea cultivars at different harvest periods (채취시기가 다른 국내외 녹차잎의 기능성분 함량, 뇌세포 생존 및 대사 효소 활성 조절 효과 조사)

  • Lee, Bang-Hee;Jeon, Sae Hyun;Jeong, Hana;Choi, Jung;Kim, Young-Min;Yang, Kwang-Yeol;Nam, Seung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.427-434
    • /
    • 2020
  • This study was performed to compare nutritional compounds and physiological functions of five domestic and imported green tea cultivars at three time points. The five cultivars were compared for theanine, γ-aminobutyric acid, and catechin content by LC-MS/MS and HPLC. Furthermore, the five tea cultivars were functionally characterized with respect to antioxidant activity, brain cell protective effect, and inhibitions of α-glucosidase and HMG-CoA reductase activities. Among green tea cultivars, Chamnok had the highest content of catechins (198 mg/g DW), theanine (11.89 mg/g DW), and tannin (23.6 mg/g DW). Considering functional properties, Chamnok treatment resulted in the maximum viability of brain cells and reduced the cortisol content of SH-SY5Y cells. The inhibition of α-glucosidase and HMG-CoA reductase was the strongest following Chamnok treatment (72.9% and 69.8%, respectively). These results indicate that Chamnok could be optimal for consumption or favorable processing owing to its high nutritional compounds, such as theanine and catechin, and remarkable brain cell protective effects.

The neuroprotective effect of mycophenolic acid via anti-apoptosis in perinatal hypoxic-ischemic brain injury (주산기 저산소성 허혈성 뇌손상에서 항세포자멸사를 통한 mycophenolic acid의 신경보호 효과)

  • Kim, Ji Young;Yang, Seung Ho;Cha, Sun Hwa;Kim, Ji Yeun;Jang, Young Chae;Park, Kwan Kyu;Kim, Jin Kyung;Chung, Hai Lee;Seo, Eok Su;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.7
    • /
    • pp.686-693
    • /
    • 2007
  • Purpose : Mycophenolic acid (MPA), the active metabolite of mycophenolate mofetil (MMF), is a potent inhibitor of inosine-monophosphate dehydrogenase (IMPDH), a new immunosuppressive drug used. It was reported that MPA protected neurons after excitotoxic injury, induced apoptosis in microglial cells. However, the effects of MPA on hypoxic-ischemic (HI) brain injury has not been yet evaluated. Therefore, we examined whether MPA could be neuroprotective in perinatal HI brain injury using Rice-Vannucci model (in vivo) and in rat brain cortical cell culture induced by hypoxia (in vitro). Methods : Cortical cells were cultured using a 18-day-pregnant Sprague-Dawley (SD) rats and incubated in 1% $O_2$ incubator for hypoxia. MPA ($10{\mu}g/mL$) before or after a HI insult was treated. Seven-day-old SD rat pups were subjected to left carotid occlusion followed by 2 hours of hypoxic exposure (8% $O_2$). MPA (10 mg/kg) before or after a HI insult were administrated intraperitoneally. Apoptosis was measured using western blot and real-time PCR for Bcl-2, Bax, caspase-3. Results : H&E stain revealed increased brain volume in the MPA-treated group in vivo animal model of neonatal HI brain injury. Western blot and real-time PCR showed the expression of caspase-3 and Bax/Bcl-2 were decreased in the MPA-treated group In in vitro and in vivo model of perinatal HI brain injury, Conclusion : These results may suggest that the administration of MPA before HI insult could significantly protect against perinatal HI brain injury via anti-apoptotic mechanisms, which offers the possibility of MPA application for the treatment of neonatal HI encephalopathy.

Neuroprotective Effect of Rice with Phellinus linteus Mycelium in HT22 Cells (상황버섯균사체 쌀의 HT22 신경세포 보호 효과)

  • Kim, Ji Hyun;Chun, Soon Sil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.7
    • /
    • pp.886-890
    • /
    • 2017
  • In this study, the protective effect of rice with Phellinus linteus mycelium (PLMR) against hydrogen peroxide-induced oxidative stress was assessed in a mouse hippocampal neuronal HT22 cell line through (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) salt (MTS) assay and western blot. MTS assay using HT22 cells showed that PLMR extract did not affect viability at a concentration range from 1 mg/mL to 5 mg/mL. However, at concentrations over 10 mg/mL, PLMR extract resulted in increased cell death. Cell viability of HT22 was significantly reduced by $H_2O_2$ treatment, and reduction of cell viability was efficiently restored by treatment with PLMR extract in a dose-dependent manner from 0.1 to 1 mg/mL. Cells treated with $H_2O_2$ showed increased expression of Bax, a pro-apoptotic protein, which was down-regulated by treatment with PLMR extract. On the other hand, cells treated with $H_2O_2$ resulted in reduced expression of Bcl-2, an anti-apoptotic protein, which was restored by treatment with PLMR extract. In addition, treatment with PLMR extract reduced expression of cleaved caspase 3 and PARP, which were up-regulated by $H_2O_2$ treatment. The results may suggest that treatment with PLMR extract would suppress $H_2O_2$-induced apoptosis of HT22 cells.

Protective Effects of Helianthus annuus Seed Extract against Chemical-Induced Neuronal Cell Death (해바라기씨 추출물의 뇌세포에 대한 사멸 보호 효과)

  • Park, Ja-Young;Woo, Sang-Uk;Heo, Jin-Chul;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.213-219
    • /
    • 2007
  • To develop an anti-dementia agent with potential therapeutic value in the protection of neuronal cells, we selected a water extract of Helianthus annuus seed for analysis. We measured acetylcholinesterase inhibitory activity in the extract, and analyzed the protective effect of the extract on neuronal cell death induced by hydrogen peroxide, or amyloid ${\beta}-peptide$, of SH-SY5Y neuroblastoma cells. The result showed that the extinct exerted protective effects of 83%, 72% and 53% respectively, on cell death induced by 100M, 200M, and 500M hydrogen peroxide. Also, when 50M of amyloid ${\beta}-peptide$ was added to the cells, the extract showed a protective effect (up to 80%) on cell death. Overall, the results showed that the H. annuus extract inhibited acetylcholinesterase activity in a dose-dependent manner, and the extract also strongly protected against cell death induced by hydrogen peroxide or amyloid ${\beta}-peptide$.