선진국에서는 지능형 농사 기법을 이용하여 농산물 가격을 예측하고 있다. 우리나라에서도 농산물 가격 폭등 및 급락을 막기 위해서 기초 연구를 하고 있다. 그러나 어느 누구도 농산물 가격예측을 하는 것은 불가능하다. 본 논문에서는 농산물 예측 가격을 향상하기 위해서 전처리로 신경망을 사용하였다. 또한 후처리로써 예기치 못한 상황을 실시간으로 예측할 수 있는 퍼지알고리즘을 개발하였다. 시뮬레이션결과 제안된 농산물 가격 예측이 퍼지 규칙을 사용 하지 않은 기존 수요예측 시스템보다 가격오차를 줄일 수 있음을 입증했다.
농산물의 산지 가격이나 도매가격이 등락하면, 즉시 또는 일정한 시차 이후에 소비자가격도 등락한다. 본 논문에서는 선형회귀모델을 통해 쌀 가격을 예측하고 쌀 가격에 영향을 미치는 날씨의 시기를 찾아보고자 한다. 이에 따라 KAMIS, 기상자료개방포털, KOSIS에서 수집한 날씨, 생산량, 그리고 소비자물가 등락률 데이터를 이용하여 쌀 가격 예측을 수행하고, 날씨 데이터와 쌀 가격 데이터의 날짜 간격을 두어 날씨가 쌀 가격에 영향을 미치는 시기를 알아보았다. 모델 평가 결과, 2개월 간격을 두고 예측한 RMSE가 164.135로 가장 큰 영향을 미쳤다. 본 연구를 기반으로 향후 다른 농산물의 가격 예측도 가능할 것이며 농산물에 영향을 미치는 변수의 시기도 예측할 수 있을 것으로 기대한다.
농산물은 기상, 기후 등의 변화로 인해 공급이 불규칙하고, 공급량이 10% 하락하면 가격이 50% 상승하는 가격 탄력성이 매우 높다. 이러한 농산물 가격의 변동으로 인해 소상인의 경매를 통해 생산자에게 대금의 안전성을 보장하고 있다. 그러나, 과잉생산으로 가격이 폭락할 경우, 생산자에 대한 보호 조치는 미비한 실정이다. 따라서, 본 논문에서는 농산물에 대한 가격을 인공지능 알고리즘으로 예측하여 전자거래 시스템에 활용할 수 있는 비즈니스 모델을 설계하였다. 이를 위해, 학습 패턴 쌍으로 모델을 학습시키고, ARIMA, SARIMA, RNN, CNN을 적용하여 예측 모델을 설계하였다. 최종적으로, 농산물 예측가격 데이터를 단기예측과 중기예측으로 분류하여 검증하였다. 검증 결과, 2018년 데이터를 기반으로 실제 가격과 예측 가격이 91.08%의 정확도를 나타냈다.
태풍, 홍수는 우리에게 빈번하게 닥치는 자연 재해이며, 이와 같은 자연 재해로부터 오는 피해는 사전에 예측되어 대응책이 마련될 필요가 있다. 자연 재해로부터 야기되는 피해에는 건물의 붕괴, 인명 피해, 논/밭의 유실 등 주로 직접적인 피해가 많지만, 소비자 물가 상승과 같은 간접적인 영향에도 관심을 가져야 한다. 태풍, 홍수의 피해로부터 영향을 받는 대표적인 소비재 상품은 농산물이다. 갑작스럽고 강력한 태풍은 많은 비를 동반하면서 농작물에 피해를 주고, 농산물의 가격을 상승시킨다. 본 연구에서는 딥러닝 알고리즘을 활용하여 태풍과 같은 자연 재해가 농산물 가격에 미치는 영향을 예측한다. 우리는 데이터 확보가 가능한 쌀, 양파, 대파, 애호박, 시금치 등을 가격 예측 대상으로 했고, 농산물 가격에 영향을 미치는 변수 데이터들로 학습 모델을 만들고, 그 학습 모델이 농산물 가격을 예측하는 연구를 진행하였다. 연구 결과, 모델에 의한 예측 가격과 실제 가격의 차이를 나타내는 RMSE가 0.069 수준이며, 농산물 가격을 비교적 잘 설명하는 것으로 해석된다. 정확한 농산물 가격 예측은 정부의 농산물 공급 규모 조절 등 자연 재해 대응을 위한 정부의 노력에 활용될 수 있을 것이다.
본 논문에서는 기온과 강수량이 농산물 가격에 미치는 영향을 분석하고 TensorFlow를 이용해 주요 농산물 가격을 예측하였다. 분석 결과, 기온 상승과 강수량 증가는 배추, 무, 대파, 상추, 양파 등의 가격 상승에 유의미한 영향을 미쳤다. 특히, 기온과 강수량이 동시에 증가할 때 가격이 급격히 상승하였다. 예측 모델은 기후 변화에 따른 농산물 가격 변동을 사전에 예측하는 데 유용하였다. 이를 통해 농업 생산자와 소비자가 기후 변화에 대비하고, 가격 변동에 대한 대응 전략을 마련할 수 있다. 논문에서는 기후 변화가 농산물 가격에 미치는 영향을 이해하고, 농산물 시장의 안정성과 지속 가능성을 높이는 방안을 모색하는 데 기여할 수 있다. 또한, 기후 변화 시대에 농업의 지속 가능성을 높이고 경제적 안정성을 확보하는 데 중요한 자료를 제공한다. 연구 결과는 정책 결정자들에게도 유용한 통찰을 제공할 것이며, 기후 변화에 대응한 효과적인 농업 정책 수립에 기여할 수 있다.
농산물은 일상 소비의 필수품으로서 도소매 시장의 많은 부분을 차지하며, 농산물의 소비와 가격은 농산물의 수급, 소비자 지출, 농업 가계소득에 영향을 미친다. 따라서 본 연구에서는 LSTM을 이용해 농산물 거래, 기상관측, 관세청 품목별 수출입 실적, 신선식품 지수 데이터를 사용해 단위가격 예측에 관한 연구를 수행하였다. 농산물의 수급관리와 도소매 시장에서의 적정한 가격을 연구하기 위해 채소가격 안정제 대상 품목 중 소비자물가지수 가중치가 높은 마늘, 배추, 양파를 대상으로 단위가격을 예측한다.
농산물에 대한 가격을 정확하게 예측하는 것은 정부와 지방자치단체, 농업관련 주체들에게 중요한 정보가 된다. 또한 농산물의 생산 및 출하는 기상상황에 큰 영향을 받는다. 본 논문에서는 기상상황에 따른 가격변동성이 큰 배추에 대해 최근 각광받는 딥러닝 기술을 적용하여 가격 예측 모형을 제안하였다. 기존의 배추 가격 예측 모형과 예측 성능을 비교하였고 그 우수성을 확인하였다.
본 논문에서는 Multi-Step Time Series의 세 가지 전략을 비교 분석하기 위해 LGBM, MLP, LSTM, GRU를 사용하여 농산물 중장기 가격 예측에 대한 최적의 모형을 제안한다. 제안 모형은 다각도로 전략을 선택하여 모델과 전략간 최적의 조합을 찾도록 설계되었다. 기존 농산물 가격 예측 연구에서는 전통 계량경제 모델인 ARIMA를 비롯하여 LSTM 계열 모델이 주로 사용된 반면 Multi-Step Time Series 관련 농산물 가격 예측 연구는 매우 제한적이다. 본 연구에서는 농산물 가격의 변동성 정도에 따라 두 개의 기간으로 나누어 실험을 진행하였으며, Direct, Hybrid, Multiple Outputs 등 세 전략의 중장기 가격 예측 결과 Hybrid 접근법이 상대적으로 우수한 성능을 보였다.본 연구 결과는 중장기 일별 가격 예측을 고도화할 수 있는 효과적인 대안을 제시한다는 측면에서 학술적, 실무적 의의를 갖는다.
기존의 예측 방법들은 과거의 통계적인 수치를 사용해서 미래를 예측했었다. 정확하게 농산물 가격을 예측하려면 정확한 지식과 많은 노력이 필요하다. 그러므로 이러한 문제점을 해결하기 위해서, 본 논문에서는 농산물 예측 가격을 향상하기 위해서 전처리로 퍼지 및 신경망을 사용하였다. 또한 후처리로써 예기치 못한 상황을 실시간으로 예측할 수 있는 지능형 농사 전문가시스템을 개발하였다. 시뮬레이션결과 제안된 농산물 가격 예측이 퍼지 규칙을 사용하지 않은 기존 수요예측 시스템보다 가격오차를 줄일 수 있음을 입증했다.
배추와 같은 채소류는 자연재해의 영향을 많이 받기 때문에 폭우나 병해와 같은 재해로 인해 가격 변동이 심해져 농가 경제에 영향을 미치게 된다. 이러한 문제를 해결하기 위해서 농산물 가격 예측을 위한 다양한 노력이 행해졌지만 극심한 가격 예측 변동을 예측하기는 어렵다. 본 연구에서는 단일 분류기를 결합하여 다양한 여러 개의 분류기를 통해 최종 예측 결과를 결정하는 방식인 앙상블 Voting 기법으로 배추 가격을 분석하였다. 또한 시계 열 분석 방법인 LSTM과 부스팅 기법인 XGBoost와 RandomForest로 결과 비교를 하였다. 가격 데이터는 일별 데이터를 사용하였고 배추 가격에 영향을 주는 기상정보와 물가지수 등을 사용하였다. 연구 결과로는 실제값과 예측값의 차이를 보여주는 RMSE 값이 약 236 수준이다. 이 연구를 활용하여 농산물 가격 예측과 같은 다른 시계 열 분석 연구 모델 선정에 활용할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.