DOI QR코드

DOI QR Code

Forecasting Prices of Major Agricultural Products by Temperature and Precipitation

기온과 강수량에 따른 주요 농산물 가격 예측

  • Kun-Hee Han (Division of Computer Engineering, Baekseok University) ;
  • Won-Shik Na (Department of Computer Science, Namseoul University)
  • 한군희 (백석대학교 컴퓨터공학부) ;
  • 나원식 (남서울대학교 컴퓨터소프트웨어학과)
  • Received : 2024.05.23
  • Accepted : 2024.06.21
  • Published : 2024.06.30

Abstract

In this paper, we analyzed the impact of temperature and precipitation on agricultural product prices and predicted the prices of major agricultural products using TensorFlow. As a result of the analysis, the rise in temperature and precipitation had a significant effect on the rise in prices of cabbage, radish, green onion, lettuce, and onion. In particular, prices rose sharply when temperature and precipitation increased simultaneously. The prediction model was useful in predicting agricultural product price changes due to climate change. Through this, agricultural producers and consumers can prepare for climate change and prepare response strategies to price fluctuations. The paper can contribute to understanding the impact of climate change on agricultural product prices and exploring ways to increase the stability and sustainability of agricultural product markets. In addition, it provides important data to increase agricultural sustainability and ensure economic stability in the era of climate change. The research results will also provide useful insights to policy makers and can contribute to establishing effective agricultural policies in response to climate change.

본 논문에서는 기온과 강수량이 농산물 가격에 미치는 영향을 분석하고 TensorFlow를 이용해 주요 농산물 가격을 예측하였다. 분석 결과, 기온 상승과 강수량 증가는 배추, 무, 대파, 상추, 양파 등의 가격 상승에 유의미한 영향을 미쳤다. 특히, 기온과 강수량이 동시에 증가할 때 가격이 급격히 상승하였다. 예측 모델은 기후 변화에 따른 농산물 가격 변동을 사전에 예측하는 데 유용하였다. 이를 통해 농업 생산자와 소비자가 기후 변화에 대비하고, 가격 변동에 대한 대응 전략을 마련할 수 있다. 논문에서는 기후 변화가 농산물 가격에 미치는 영향을 이해하고, 농산물 시장의 안정성과 지속 가능성을 높이는 방안을 모색하는 데 기여할 수 있다. 또한, 기후 변화 시대에 농업의 지속 가능성을 높이고 경제적 안정성을 확보하는 데 중요한 자료를 제공한다. 연구 결과는 정책 결정자들에게도 유용한 통찰을 제공할 것이며, 기후 변화에 대응한 효과적인 농업 정책 수립에 기여할 수 있다.

Keywords

References

  1. S. J. Park, E. J. Kim & J. W. Woo. (2011)."A Study on the Measures in the Field of International Trade for the Solution of the Global Warming Problem. The Journal of International Trade & Commercev, 7(2), 69-84 DOI : 10.16980/jitc.7.2.201106.69. 
  2. K. H. Chul. (2019). Climate Crisis and Christian Ethical Responses in the Special Report on "Global Warming of 1.5℃." University and Christian Mission, (42), 171-203. DOI : 10.22737/U&M.2019.42.171. 
  3. S. Shim, S. H. Kwon, Y. J. Lim, S. S. Yum & Y. H. Byun. (2019). Understanding climate change over East Asia under stabilized 1.5 and 2.0℃ global warming scenarios. Atmosphere, 29(4), 391-401. DOI : 10.14191/ATMOS.2019.29.4.391. 
  4. J. Park. (2010). A Study on the Circulation Improvement Program about the Stabilization of Price for Korean Agricultural Products. Journal of Distribution and Management Research, 13(5), 33-54. DOI : 10.17961/JDMR.13.5.201012.33. 
  5. N. G. Han & B. H. Kim. (2021). Design of e-commerce business model through AI price prediction of agricultural products. Journal of the Korea Convergence Society, 12(12), 83-91. DOI : 10.15207/JKCS.2021.12.12.083. 
  6. Y. J. Lee, S. M. Yoon & Y. J. Lee. (2021). Energy Prices and Agricultural Product Prices: An Empirical Study using the Quintile Cross-spectral Method. Korea Energy Economic Review, 20(2), 33-60. DOI : 10.22794/KEER.2021.20.2.002. 
  7. D. Y. Kim, S. H. Lee, Y. J. Hong, E. J. Lee & S. J. Im. (2010). The Determination of Probability Distributions of Annual, Seasonal, and Monthly Precipitation in Korea. Korean Journal of Agricultural and Forest Meteorology, 12(2), 83-94. DOI : 10.5532/KJAFM.2010.12.2.083. 
  8. J. Yoon & U. S. Song. (2016, February 29). High Resolution Rainfall Prediction Using Distributed Computing Technology. Journal of Digital Contents Society. Digital Contents Society, 17(1), 51-57 DOI : 10.9728/dcs.2016.17.1.51. 
  9. S. Uranchimeg, J. S. Kim, K. H. Kim & H. H. Kwon. (2018). Development of bias correction scheme for high resolution precipitation forecast. Journal of Korea Water Resources Association, 51(7), 575-584. DOI : 10.3741/JKWRA.2018.51.7.575. 
  10. J. H. Kim. (2016). Precipitation Data Sources and Number of Locations by Precipitation Data Construction Method. Gwangju Institute of Science and Technology. DOI : 10.23000/TRKO201700003995.116. 
  11. E. Kim, J. Kim, C. Kim, C. Bae & Y. Kim. (2019). Research on language numerlization and data matching through natural language processing and tensorflow. In Proceedings of the Korea Information Processing Society Conference (pp. 571-572). Korea Information Processing Society. DOI : 10.3745/PKIPS.Y2019M05A.571. 
  12. K. S. Jang & J. H. Kim. (2017). A Study on High Performance GPU based Container Cloud System supporting TensorFlow Serving Deployment Service. In Proceedings of the Korea Information Processing Society Conference (pp. 386-388). Korea Information Processing Society. DOI : 10.3745/PKIPS.Y2017M11A.386. 
  13. S. H. Joe, J. G. Kang, J. H. Kim, S. J. Lee, G. Kim, & Y. Kim. (2019). A study on tensorflow based image processing: focusing by pill classification. In Proceedings of the Korea Information Processing Society Conference (pp. 559-561). Korea Information Processing Society. DOI : 10.3745/PKIPS.Y2019M05A.559. 
  14. S. H. Baek. (2013). Performance Comparison of Data Mining Approaches for Prediction Models of Near Infrared Spectroscopy Data. Journal of the Korea Safety Management & Science, 15(4), 311-315. DOI : 10.12812/KSMS.2013.15.4.311. 
  15. D. M. Choi et al. (2011). Data prediction Strategy for Sensor Network Clustering Scheme. Journal of Korea Multimedia Society, 14(9), 1138-1151. DOI : 10.9717/kmms.2011.14.9.1138.