References
- S. J. Park, E. J. Kim & J. W. Woo. (2011)."A Study on the Measures in the Field of International Trade for the Solution of the Global Warming Problem. The Journal of International Trade & Commercev, 7(2), 69-84 DOI : 10.16980/jitc.7.2.201106.69.
- K. H. Chul. (2019). Climate Crisis and Christian Ethical Responses in the Special Report on "Global Warming of 1.5℃." University and Christian Mission, (42), 171-203. DOI : 10.22737/U&M.2019.42.171.
- S. Shim, S. H. Kwon, Y. J. Lim, S. S. Yum & Y. H. Byun. (2019). Understanding climate change over East Asia under stabilized 1.5 and 2.0℃ global warming scenarios. Atmosphere, 29(4), 391-401. DOI : 10.14191/ATMOS.2019.29.4.391.
- J. Park. (2010). A Study on the Circulation Improvement Program about the Stabilization of Price for Korean Agricultural Products. Journal of Distribution and Management Research, 13(5), 33-54. DOI : 10.17961/JDMR.13.5.201012.33.
- N. G. Han & B. H. Kim. (2021). Design of e-commerce business model through AI price prediction of agricultural products. Journal of the Korea Convergence Society, 12(12), 83-91. DOI : 10.15207/JKCS.2021.12.12.083.
- Y. J. Lee, S. M. Yoon & Y. J. Lee. (2021). Energy Prices and Agricultural Product Prices: An Empirical Study using the Quintile Cross-spectral Method. Korea Energy Economic Review, 20(2), 33-60. DOI : 10.22794/KEER.2021.20.2.002.
- D. Y. Kim, S. H. Lee, Y. J. Hong, E. J. Lee & S. J. Im. (2010). The Determination of Probability Distributions of Annual, Seasonal, and Monthly Precipitation in Korea. Korean Journal of Agricultural and Forest Meteorology, 12(2), 83-94. DOI : 10.5532/KJAFM.2010.12.2.083.
- J. Yoon & U. S. Song. (2016, February 29). High Resolution Rainfall Prediction Using Distributed Computing Technology. Journal of Digital Contents Society. Digital Contents Society, 17(1), 51-57 DOI : 10.9728/dcs.2016.17.1.51.
- S. Uranchimeg, J. S. Kim, K. H. Kim & H. H. Kwon. (2018). Development of bias correction scheme for high resolution precipitation forecast. Journal of Korea Water Resources Association, 51(7), 575-584. DOI : 10.3741/JKWRA.2018.51.7.575.
- J. H. Kim. (2016). Precipitation Data Sources and Number of Locations by Precipitation Data Construction Method. Gwangju Institute of Science and Technology. DOI : 10.23000/TRKO201700003995.116.
- E. Kim, J. Kim, C. Kim, C. Bae & Y. Kim. (2019). Research on language numerlization and data matching through natural language processing and tensorflow. In Proceedings of the Korea Information Processing Society Conference (pp. 571-572). Korea Information Processing Society. DOI : 10.3745/PKIPS.Y2019M05A.571.
- K. S. Jang & J. H. Kim. (2017). A Study on High Performance GPU based Container Cloud System supporting TensorFlow Serving Deployment Service. In Proceedings of the Korea Information Processing Society Conference (pp. 386-388). Korea Information Processing Society. DOI : 10.3745/PKIPS.Y2017M11A.386.
- S. H. Joe, J. G. Kang, J. H. Kim, S. J. Lee, G. Kim, & Y. Kim. (2019). A study on tensorflow based image processing: focusing by pill classification. In Proceedings of the Korea Information Processing Society Conference (pp. 559-561). Korea Information Processing Society. DOI : 10.3745/PKIPS.Y2019M05A.559.
- S. H. Baek. (2013). Performance Comparison of Data Mining Approaches for Prediction Models of Near Infrared Spectroscopy Data. Journal of the Korea Safety Management & Science, 15(4), 311-315. DOI : 10.12812/KSMS.2013.15.4.311.
- D. M. Choi et al. (2011). Data prediction Strategy for Sensor Network Clustering Scheme. Journal of Korea Multimedia Society, 14(9), 1138-1151. DOI : 10.9717/kmms.2011.14.9.1138.