• Title/Summary/Keyword: 농도 균일 모델

Search Result 102, Processing Time 0.032 seconds

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.

Anti-diabetic effects of Allium tuberosum rottler extracts and lactic acid bacteria fermented extracts in type 2 diabetic mice model (제2형 당뇨질환모델 db/db 마우스에서 부추 추출물 및 유산균 발효물의 항당뇨 효과)

  • Kim, Bae Jin;Jo, Seung Kyeung;Jeong, Yoo Seok;Jung, Hee Kyoung
    • Food Science and Preservation
    • /
    • v.22 no.1
    • /
    • pp.134-144
    • /
    • 2015
  • The anti-diabetic effects of Allium tuberosum Rottler extracts (ATE) and ATE fermented with lactic acid bacteria in db/db mice were evaluated. The electron donating activity of ATE fermented with Lactobacillus plantarum, and Lactobacillus casei, respectively, increased compared to that of ATE, but the superoxide radical scavenging activity of the ATE incubated with L. plantarum decreased. The superoxide radical scavenging activity of the ATE fermented with both L. plantarum and L. casei was similar to that of the ATE. Therefore, fermented ATE (FATE) was prepared for in vivo testing by incubating it with both L. plantarum and L. casei. The db/db mice were divided into six groups: normal (non-diabetic mice), diabetic control (DM), and four experimental groups administered 200 or 400 mg/kg/day ATE (ATE200 and ATE400) and 200 or 400 mg/kg/day FATE (FATE200 and FATE400). Weight gain was significantly inhibited in the FATE200 group compared with that in the other db/db mice groups (p<0.05). The areas under the curve of the ATE400 and FATE400 groups were significantly smaller than that of the DM group in the glucose tolerance evaluation. The serum glucagon-like peptide-1 levels in the ATE400 and FATE400 groups increased. These results indicate that administering ATE and FATE may be effective against anti-hyperglycemia by regulating insulin resistance. In particular, FATE may be beneficial for controlling obesity in type 2 diabetes.

Process Development of Algae Culture for Livestock Wastewater Treatment Using Fiber-Optic Photobioreactor (축산폐수 처리를 위한 광섬유 생물반응기를 이용한 조류 배양 공정 개발)

  • 최정우;김영기;류재홍;이우창;이원홍;한징택
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.14-21
    • /
    • 2000
  • In this study, algae cultivation using the photobioreactor has been applied to remove the nitrogen and phosphorus compounds in the wastewater of the livestock industry. The optimal ratio of nitrate and ortho-phosphate concentration was found for the enhancement of removal efficiency. To achieve the high density culture of algae, the photobioreactor consisted of optical fibers wes developed to get the sufficient light intensity. The light could be illuminated uniformly from light source to the entire reactor by the optical fibers. The structured kinetic model was proposed to describe the growth rate, consumption rate of nitrates and ortho-phosphates in algae culture. The self-organizing fuzzy logic controller incorporated with genetic algorithm was constructed to control the semi-continuous wastewater treatment system. The proposed fuzzy logic controller was applied to maintain the nitrated concentration at the given set-point with the control of wastewater feeding rate. The experimental results showed that the self-organizing fuzzy logic controller could keep the nitrate concentration and enhance algae growth.

  • PDF

Stability of Anti-Yeast Activities and Inhibitory Effects of Defatted Green Tea Seed Extracts on Yeast Film Formation (탈지 녹차씨 추출물의 항효모 활성 안정성 및 산막 형성 억제능 평가)

  • Yang, Eun Ju;Seo, Ye-Seul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.3
    • /
    • pp.327-334
    • /
    • 2017
  • Water and 75% ethanol extracts were prepared from defatted green tea seeds and evaluated for their anti-yeast activities. The antimicrobial activities of defatted green tea seed extracts (DGTSEs) were tested against food-spoilage bacteria, yeasts, and molds. DGTSEs exhibited antimicrobial activities with minimum inhibitory concentrations of $39{\sim}1,250{\mu}g/mL$ against three bacteria, two molds, and all tested yeast strains. Ethanol extract showed higher antimicrobial activity than water extract. The stability of anti-yeast activities of DGTSEs was examined under different conditions of temperature, pH, and NaCl concentrations. The anti-yeast activities of DGTSEs were stable at pH 3~9, 0~20% NaCl, and $100^{\circ}C$ for 30 min. However, anti-yeast activities of DGTSEs decreased upon heating at $70^{\circ}C$ for 24 h or $121^{\circ}C$ for 15 min. DGTSEs were applied to food models to determine their inhibitory effects on yeast film formation. Water and 75% ethanol extracts were effective in preventing yeast film formation at concentrations more than 156 and $39{\mu}g/mL$ in soy sauce, 156 and $78{\mu}g/mL$ in pickle sauce, and 78 and $39{\mu}g/mL$ in kimchi, respectively.

Anti-inflammatory Effect of Bee Venom Acupuncture at Sinsu($BL_{23}$) in a MPTP Mouse Model of Parkinson Disease (MPTP 유발 파킨슨 병 동물 모델에서의 신수혈($BL_{23}$) 봉독약침의 항염증 효과)

  • Kim, Chan-Young;Lee, Jae-Dong;Lee, Sang-Hoon;Koh, Hyung-Kyun
    • Journal of Acupuncture Research
    • /
    • v.26 no.4
    • /
    • pp.49-58
    • /
    • 2009
  • 목적 : 파킨슨 병은 기저핵 흑질의 치밀부에서 도파민성 신경세포의 퇴행으로 인하여 발생하는 질병으로 신경 염증이 주요 병인으로 밝혀져 있다. 이 연구는 MPTP 유발 파킨슨 병 동물 모델에서 신수혈($BL_{23}$)에 대한 봉독 약침의 항염증 효과 및 그 기전을 확인하기 위해 시행되었다. 방법 : $C57_{BL}$/6쥐를 무처치군, MPTP+saline군, MPTP+BVA(0.06mg/kg)군, MPTP+BVA(0.6mg/kg)군의 4군으로 나눈 뒤 무처치군을 제외한 모든 그룹에 총 8시간 동안 2시간 간격으로 MPTP-HCl(20mg/kg per dose$\times$4)을 복강내로 주입하였다. MPTP+BVA 군에서 봉독약침은 마지막 MPTP 주입 2시간 후부터 48시간 간격으로 신수혈($BL_{23}$)에 양측으로 각 20${\mu}\ell$씩 주입하였고 MPTP+saline군에서는 봉독약침 대신 Saline을 주입하였다. 마지막 MPTP 주입 후 7일째에 쥐의 뇌를 적출한 후 면역조직화학법을 시행하였다. 결과 : MPTP 유발 파킨슨 병 동물 모델에서 신수혈에 대한 봉독약침은 농도 의존적으로 TH-Immunoreactivity neuron의 감소와 microglial activation을 억제하였다. HSP70-IR neuron은 모든 군에서 나타나지 않았다. 결론 : 봉독약침이 용량의존적으로 microglial activation을 억제하는 효과를 통해 도파민성 신경세포의 파괴를 억제함으로써 항염 효과를 나타냄을 알 수 있었다. 이 결과는 봉독약침이 microglial activation 억제를 통해 임상적으로 파킨슨 병과 같은 신경 퇴행성 질병에 있어 유용한 치료수단이 될 수 있음을 시사한다.

  • PDF

Design of the Fixed-Bed Catalytic Reactor for the Maleic Anhydride Production (무수마레인산 생산을 위한 고정층 촉매 반응기 설계)

  • Yoon, Young Sam;Koo, Eun Hwa;Park, Pan Wook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.467-476
    • /
    • 1999
  • This paper analyzed the behavior of fixed-bed catalytic reactor (FBCR) which synthesizing maleic anhydride(MA) from the selective oxidation of n-butane. The behavior of FBCR describing convection-diffusion-reaction mechanism is examined by using two-dimensional pseudohomogeneous plug-flow transient model, with the kinetics of Langmuir-Hinshelwood type. Prediction model is composed by optimum parameter estimation from temperature profile, yield and conversion of single FBCR on operating condition variations of Sharma's pilot-plant experiment. A double FBCR with same yield and conversion for single FBCR generated a $8.96^{\circ}C$ lower hot spot temperature than a single FBCR. We could predict parametric sensitivity according to the variation of possible operating condition (temperature, concentration, volumetric flow of feed reactant and coolant flow rate) of single and double FBCR. Double FBCR showed the behavior of more operating range than single FBCR. Double FBCR with nonuniform activities could assure safety operation condition for the possible variation of operating condition. Also, double FBCR had slightly higher than the single FBCR in conversion and yield.

  • PDF

Optimization of Fluoride Adsorption on Bone Char with Response Surface Methodology (RSM) (반응표면분석법(RSM)을 이용한 골탄의 불소 흡착 조건 최적화)

  • Hwang, Jiyun;Rachana, Chhuon;Dsane, Victory FiiFi;Kim, Junyoung;Choi, Younggyun;Shin, Gwyam
    • Journal of Appropriate Technology
    • /
    • v.5 no.2
    • /
    • pp.82-90
    • /
    • 2019
  • The Box-Benhken Design (BBD) model of response surface methodology (RSM) was used to optimize fluoride adsorption conditions in water using a 350℃ thermally treated cow bone. Water temperature, pH, contact time, and initial fluoride concentration were selected as variables to be optimized. A second order reaction equation was obtained from a Box-Behnken Design DoE experimental matrix of 29 runs. R2 and p-value of the model were 0.9242 and <0.0001, respectively, indicating that the selected variables had a very substantial effect on the adsorption results. The optimized adsorption capacity of the thermally synthesized bone char was estimated to be 6.46 mgF/g at the water temperature of 39.68℃, pH 6.25, contact time of 88.81 minutes and an initial fluorine concentration of 14.64 mgF/L.

Mixing and Gas Removal Behavior in Scrap Remelt of Light Metal by Impeller Agitation (임펠러 교반에 의한 경량금속 스크랩 용해로에서의 혼합 및 탈 가스 거동)

  • 한정환;이주한;김석범;변지영;심재동
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.42-51
    • /
    • 1998
  • Hydrogen in atmosphere can easily dissolve in melt of light metal alloys. Increasing demand for recycling of light metal a alloys has, therefore, focused attention on the removal of hydrogen gas, and alloy addition in melt has become an imporLant r refining process. For this purpose behaviors of mixing and hydrogen degassing in impeller agitated refming vessel with/without barnes were investigated. Flow patterns, mixing time behavior and kinetics of degassing in various agitating conditions were analysed in watet model experiments. And, numerical analysis on turbulent flow pattern in impeller agitated vessels was performed.

  • PDF

Development of One-Step Immuno-Chromatography Assay System for Salmonella typhimurium (Immuno-Chromatography 방법을 이용한 식중독균(Salmonella typhimurium) 1단계 분석시스템의 개발)

  • 백세환;이창우이창섭육순학
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.420-430
    • /
    • 1996
  • One-step immuno-chromatography assay system for heat-killed Salmonella typhimurium antigens was developed. Three major components used were a glass fiber membrane (placed at the bottom of the system) with an antibody (specific to the analyse, detection antibody)-gold conjugate deposited in a dry state on the surface, a nitrocellulose membrane (middle) with an antibody (also, specific to the analyse but recognized different epitome: capture antibody) and anti-detection antibody immobilized in spatially separated areas, and a cellulose membrane (top) as absorption pad. These membranes were partially superimposed such that a wicking of aqueous solution containing sample can continuously take place through membranes. Variables that affected the system performance were the concentration of capture antibody, the location on the membrane, inert protein used for blocking of the membrane and for carrying the sample, and the concentration of the gold conjugate. Under optimal conditions, within 15 minutes after absorption of a sample solution from the bottom of the system antigen-antibody complexes of sandwich type were formed on the membrane surface area with immobilized capture antibody and a color signal was generated in proportion to the analyse concentration. The minimum do tection limit of the analyse was $1{\times}106$ Salmonella cells/mL.

  • PDF

Wet Oxidation of Phenol with Homogeneous Catalysts (균일촉매를 이용한 페놀의 습식산화)

  • Suh, Il-Soon;Ryu, Sung Hun;Yoon, Wang-Lai
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.292-302
    • /
    • 2009
  • The wet oxidation of phenol has been investigated at temperatures from 150 to $250^{\circ}C$ and oxygen partial pressures from 25.8 to 75.0 bar with initial pH of 1.0 to 12.0 and initial phenol concentration of 10 g/l. Chemical Oxygen Demand COD has bee measured to estimate the oxidation rate. Reaction intermediates have been identified and their concentration profiles have been determined using liquid chromatography. The destruction rate of phenol have shown the first-order kinetics with respect to phenol and the changes in COD during wet oxidation have been described well with the lumped model. The impact of various homogeneous catalysts, such as $Cu^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Co^{2+}$ and $Ce^{3+}$ ions, on the destruction rate of phenol and COD has also been studied. The homogeneous catalyst of $CuSO_4$ has been found to be the most effective for the destruction of phenol and COD during wet oxidations. The destruction rate of formic acid formed during wet oxidations of phenol have increased as increasing temperature and $CuSO_4$ concentration. The final concentrations of acetic acid which has been formed during wet oxidations and difficult to oxidize have increased with reaction temperature and with decrease in the catalyst load.