Wet Oxidation of Phenol with Homogeneous Catalysts

균일촉매를 이용한 페놀의 습식산화

  • Suh, Il-Soon (Department of Chemical Engineering, Konkuk University) ;
  • Ryu, Sung Hun (College of Environmental and Applied Chemistry, Kyung Hee University) ;
  • Yoon, Wang-Lai (Hydrogen Energy Research Center, Korea Institute of Energy Research)
  • 서일순 (건국대학교 화학공학과) ;
  • 류승훈 (경희대학교 화학공학과) ;
  • 윤왕래 (한국에너지기술연구원 수소에너지연구센터)
  • Received : 2009.03.21
  • Accepted : 2009.05.04
  • Published : 2009.06.30

Abstract

The wet oxidation of phenol has been investigated at temperatures from 150 to $250^{\circ}C$ and oxygen partial pressures from 25.8 to 75.0 bar with initial pH of 1.0 to 12.0 and initial phenol concentration of 10 g/l. Chemical Oxygen Demand COD has bee measured to estimate the oxidation rate. Reaction intermediates have been identified and their concentration profiles have been determined using liquid chromatography. The destruction rate of phenol have shown the first-order kinetics with respect to phenol and the changes in COD during wet oxidation have been described well with the lumped model. The impact of various homogeneous catalysts, such as $Cu^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Co^{2+}$ and $Ce^{3+}$ ions, on the destruction rate of phenol and COD has also been studied. The homogeneous catalyst of $CuSO_4$ has been found to be the most effective for the destruction of phenol and COD during wet oxidations. The destruction rate of formic acid formed during wet oxidations of phenol have increased as increasing temperature and $CuSO_4$ concentration. The final concentrations of acetic acid which has been formed during wet oxidations and difficult to oxidize have increased with reaction temperature and with decrease in the catalyst load.

페놀 습식산화에 미치는 반응온도($150{\sim}250^{\circ}C$), 산소분압(25.8~75.0 bar) 및 초기 pH(1.0~12.0)의 영향을 10 g/l의 페놀 초기농도를 사용하여 조사하였다. 습식산화속도는 화학적 산소요구량 COD를 이용하여 산출하였으며 반응 중간 생성물들을 고성능액체크로마토그래피를 사용하여 측정하였다. 습식산화 중 페놀 분해속도는 페놀에 대하여 1차 반응차수를 나타냈으며, COD 변화는 lumped 모델로 잘 묘사할 수 있었다. 금속이온($Cu^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Co^{2+}$, $Ce^{3+}$) 균일촉매의 습식산화 중 페놀 분해속도 및 COD 제거속도에 미치는 영향도 조사하였다. 페놀 분해속도 및 COD 제거속도는 $CuSO_4$를 사용한 촉매습식산화에서 가장 크게 나타났으며 촉매농도를 증가시킴에 따라 증가하였다. 습식산화 중 생성되는 개미산의 분해속도는 반응온도 및 $CuSO_4$ 농도를 증가시킴에 따라 증가하였다. 난분해성 생성물 초산의 최종농도는 반응온도를 증가시킴에 따라 증가하였으나 $CuSO_4$ 농도를 증가시킴에 따라 감소하였다.

Keywords

References

  1. Suh, I.-S. and Yoon, W.-L., 'Treatment of Non-Biodegradable Toxic and Hazardous Organics of Industrial Wastewater by High Performance Wet Air Oxidation,' Chem. Ind. Technol., 14, 566- 576(1996)
  2. Mishra, V. S., Mahajani, V. V. and Joshi, J. B., "Wet Air Oxidation," Ind. Eng. Chem. Res., 34, 2-48(1995) https://doi.org/10.1021/ie00040a001
  3. Luck, F., "Wet Air Oxidation: Past, Present and Future," Catal. Today, 53, 81-91(1999) https://doi.org/10.1016/S0920-5861(99)00112-1
  4. Imamura, S., "Catalytic and Noncatalytic Wet Oxidation," Ind. Eng. Chem. Res., 38, 1743-1753(1999) https://doi.org/10.1021/ie980576l
  5. Levec, J. and Pintar, A., "Catalytic Wet-Air Oxidation Processes: A Review," Catal. Today, 124, 172-184(2007) https://doi.org/10.1016/j.cattod.2007.03.035
  6. Li, L., Chen, P. and Gloyna, E. F., 'Generalized Kinetic Model for Wet Oxidation of Organic Compounds,' AIChE J., 37, 1687-1697(1991) https://doi.org/10.1002/aic.690371112
  7. Mantzavinos, D., Hellenbrand, R., Livingston, A. G. and Metcalfe, I. S., 'Reaction Mechanisms and Kinetics of Chemical Pretreatment of Bioresistant Organic Molecules by Wet Air Oxidation,' Wat. Sci. Tech., 35(4), 119-127(1997) https://doi.org/10.1016/S0273-1223(97)00017-6
  8. Rivas, F. J., Kolaczkowski, S. T., Beltran, F. J. and McLurgh, D. B., "Development of a Model for the Wet Air Oxidation of Phenol based on a Free Radical Mechanism," Chem. Eng. Sci., 53, 2575-2586(1998) https://doi.org/10.1016/S0009-2509(98)00060-8
  9. Shibaeva, L. V., Matelitsa, D. I., Reibe, D. D., Wetzel, D. M., and Harrison, D. P., 'Oxidation of Phenol with Molecular Oxygen in Aqueous Solutions,' Kinet. Catal., 10(5), 832-836(1969)
  10. Pruden, B. B. and Le, H., "Wet Air Oxidation of Soluble Components in Waste Water," Can. J. Chem. Eng., 54, 319-325(1976) https://doi.org/10.1002/cjce.5450540413
  11. Helling, R. K., Strobel, M. K., Torres, R. J., Jolley, R. L. and Ostwald, G. E., "Kinetics of Wet Oxidation of Biological Sludges from Coal Conversion Wastewater Treatment," Report OR NL/MIT-332, Oak Ridge National Laboratory(1981)
  12. Baillod, C. R., Lamporter, R. A. and Barna, B. A., "Wet Oxidation for Industrial Waste Treatment," Chem. Eng. Prog., 3, 52-55 (1985)
  13. aulin, L. and Chornet, E., 'High Shear Jet-Mixers as Two Phase Reactors: an Application to the Oxidation of Phenol in Aqueous Media,' Can. J. Chem. Eng., 65(2), 64-70(1987) https://doi.org/10.1002/cjce.5450650111
  14. Chang, J. C., Li, S.-S. and Ko, C.-M., "Catalytic Wet Oxidations of Phenol and p-Chlorophenol Contaminated Waters," J. Chem. Technol. Biotechnol., 64, 245-252(1995) https://doi.org/10.1002/jctb.280640306
  15. Kolaczkowski, S. T., Beltran, F. J., McLurgh, D. B. and Rivas, F. J., 'Wet Air Oxidation of Phenol: Factors that May Influence Global Kinetics,' Trans. IChemE., 75(B), 257-265(1997) https://doi.org/10.1205/095758297529138
  16. Miguelez, J. R. P., Bernal, J. L., Sanz, E. N. and de la Ossa, E. M., "Kinetics of Wet Air Oxidation of Phenol," Chem. Eng. J., 67, 115-121(1997) https://doi.org/10.1016/S1385-8947(97)00025-9
  17. Shende, R. V. and Mahajani, V. V., "Kinetics of Wet Oxidation of Formic Acid and Acetic Acids," Ind. Eng. Chem. Res., 36, 4809-4814(1997) https://doi.org/10.1021/ie970048u
  18. Gopalan, S. and Savage, P., 'A Reaction Network Model for Phenol Oxidation in Supercritical Water,' AIChE J., 41, 1864-1873(1995) https://doi.org/10.1002/aic.690410805
  19. Devlin, H. R. and Harris, I. J., "Mechanism of the Oxidation of Aqueous Phenol with Dissolved Oxygen," Ind. Eng. Chem. Fundam., 23, 387-392(1984) https://doi.org/10.1021/i100016a002
  20. Shende, R. V. and Levec, J., "Subcritical Aqueous-Phase Oxidation Kinetics of Acrylic, Maleic, Fumaric, and Muconic Acids," Ind. Eng. Chem. Res., 39, 40-47(2000) https://doi.org/10.1021/ie990385y
  21. Willms, R. S., Balinsky, A. M., Reible, D. D., Wetzel, D. M. and Harrison, D. P., "Aqueous-Phase Oxidation: the Intrinsic Kinetics of Single Organic Compounds," Ind. Eng. Chem. Res., 26, 148-154(1987) https://doi.org/10.1021/ie00061a028
  22. Santos, A., Yustos, P., Quintanilla, A. and Garcia-Ochoa, F., "Lower Toxicity Route in Catalytic Wet Oxidation of Phenol at Basic pH by using Bicarbonate Media," Appl. Catal. B: Environ., 53, 181-194 (2004) https://doi.org/10.1016/j.apcatb.2004.04.022
  23. Mantzavinos, D., Hellenbrand, R., Livingston, A. G. and Metcalfe, I. S., "Catalytic Wet Oxidation of p-Coumaric Acid: Partial Oxidation Intermediates, Reaction Pathways and Catalyst Leaching," Appl. Catal. B: Environ., 7, 379-396(1996) https://doi.org/10.1016/0926-3373(95)00040-2