• Title/Summary/Keyword: 노출강도

Search Result 673, Processing Time 0.024 seconds

Study on the Mechanical Properties of Lightweight Mortar for Fire Protection Covering Material in High Strength Concrete (고강도콘크리트용 내화피복재로 활용하기 위한 경량모르타르의 역학적 성상)

  • Lim, Seo-Hyung;Yoo, Suk-Hyung;Moon, Jong-Woog
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.8-13
    • /
    • 2011
  • High strength concrete is the occurrence of explosive spalling associated with high temperature such as a fire. The spalling causes the sever reduction of the cross sectional area with the exposure of the reinforcing steel, which originates a problem in the structural behaviour. The purpose of this study is to investigate the mechanical properties of lightweight mortar using perlite and polypropylene fiber for fire protection covering material. For this purpose, selected test variables were the ratio of water to cement, the ratio of cement to perlite, contents of polypropylene fiber. As a result of this study, it has been found that addition of perlite and polypropylene fiber to mortar modifies its pore structure and reduces its density. And it has been found that a new lightweight mortar can be used in the fire protection covering material.

Characteristics of Elastic Wave in Fire damaged High Strength Concrete using Impact-echo Method (충격반향기법을 이용한 화해를 입은 고강도 콘크리트의 탄성파 특성)

  • Lee, Jun Cheol;Lee, Chang Joon;Kim, Wha Jung;Lee, Ji Hee
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, the damages of high strength concrete exposed to high temperature have been evaluated by the impact echo method. Elastic wave velocity and dynamic modulus of elasticity were measured by the impact echo method, and the compressive strength and the static modulus of elasticity were measured by the compression testing method after exposure to high temperature. The results showed that elastic wave velocity has a linear correlation with the compressive strength and dynamic modulus of elasticity has a linear correlation with static modulus of elasticity. Based on results, it is concluded that the impact echo method can be effectively applied to evaluate the mechanical properties of fire damaged high strength concrete.

MICROSHEAR BOND STRENGTH OF ADHESIVES ACCORDING TO THE DIRECTION OF ENAMEL RODS (법랑소주 방향에 따른 접착제의 미세전단 결합강도)

  • Cho, Young-Gon;Kim, Jong-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.4
    • /
    • pp.344-351
    • /
    • 2005
  • This study compared the microshear bond strength $({\mu}SBS)$ to end and side of enamel rod bonded by four adhesives including two total etch adhesives and two self-etch adhesives. Crown segments of extracted human molars were cut mesiodistally. The outer buccal or lingual surface was used as specimens cutting the ends of enamel rods, and inner slabs used as specimens cutting the sides of enamel rods. They were assigned to four groups by used adhesives: Group 1 (All-Bond 2), Group 2 (Single Bond), Group 3 (Tyrian SPE/One-Step Plus), Group 4 (Adper Prompt L-Pop). After each adhesive was applied to enamel surface, three composite cylinders were adhered to it of each specimen using Tygon tube. After storage in distilled water for 24 hours, the bonded specimens were subjected to ${\mu}SBS$ testing with a crosshead speed of 1 mm/minute. The results of this study were as follows: 1. The $({\mu}SBS)$ of Group 2 $(16.50\pm2.31 MPa)$ and Group 4 $(15.83\pm2.33 MPa)$ to the end of enamel prism was significantly higher than that of Group 1 $(11.93\pm2.25 MPa)$ and Group 3 $(11.97\pm2.05 MPa)$ (p<0.05). 2. The $({\mu}SBS)$ of Group 2 $(13.43\pm2.93 MPa)$ to the side of enamel prism was significantly higher than that of Group 1 $(8.64\pm1.53 MPa)$, Group 3 $(9.69\pm1.80 MPa)$, and Group 4 $(10.56 \pm1.75 MPa)$ (p<0.05), 3. The mean $({\mu}SBS)$ to the end of enamel rod was significantly higher than that to the side of enamel rod in all group (p<0.05).

Use Impacts on Environmental Deteriorations on and around Trails in Odaesan National Park (오대산 국립공원 이용에 따른 등산로 및 주변환경훼손)

  • 권태호;오구균;이준우
    • Korean Journal of Environment and Ecology
    • /
    • v.9 no.2
    • /
    • pp.211-220
    • /
    • 1996
  • 5 major trails of Odaesan National Park were selected to investigate the use impacts on environmental deterioration of trail accreding to the different amunt of use. The entire width, bare width, maximum depth and slope of trail as the trail comdition surveyed at the total of 120 points were significantly greater on the more heavily-used trail. Major deterioration types of trail were root-exposure, rock-exposure, deepening and divergence in order of frquency and trail conditions of deteriorated points were significantly different from those of non-deteriorated points. The damaged area more severe than Class 4 on trail reached about 379m$^{2}$/km in total, and especcially about 1,196m$^{2}$/km in the section between Chodmyolbogung and Pirobong of Sangwonsa trail. The dominant trees of trail edge vegetation could be Quercus mongolica in upper layer, but in lower layer Rhododecdron schilipenbachii for slope and Actinidia arguta for ridge. Coverage and number of individuals of lower vegetation in trail edge were the lowest on the Sangwonsa trail of the largest use amount, and each trail was dissimilar in species composition of lower layer of edge vegetation.

  • PDF

Use Impacts on Environmental Deteriorations on and around Trails in Naesorak District of Soraksan National Park (설악산국립공원 내설악지구 등산로의 훼손 및 주연부식생)

  • 권태호;오구균;김보현
    • Korean Journal of Environment and Ecology
    • /
    • v.11 no.4
    • /
    • pp.523-534
    • /
    • 1998
  • Six trails of Naesorak(west Sorak) district of Soraksan National Park were selected to investigate the use impacts on environmental edterioration of trail according to the different amount of use. The entire width, and slope of trail as the trail condition surveyed at the total of 132 points were significantly varied with the amount of use. Major deterioration types of trail were rock-exposure, root-exposure, deepening and divergence in order of frequency. Deteriorated points were significantly different in trail conditions from non-deteriorated points, and these latter generally appeared at the lowed altituede than the former on each trail. Naesorak district still seemed to have poorer use-impacts than Oesarak(east sorak) district. The dominant species in upper layer of trail edge vegetation differed from trail to trail, but in shrub layer Lespedeza maximowiczii, lindera obutsiloba for valley trail and Rhododendron schlipenbavhii for slope trail. The species diversity and coverage of shrub layer in trail edge were the highest on the Ose'am trail and each trail was dissimilar in species composition of shrub layer of edge vegetation.

  • PDF

A study on performance evaluation of fiber reinforced concrete using PET fiber reinforcement (PET 섬유 보강재를 사용한 섬유 보강 콘크리트의 성능 평가에 관한 연구)

  • Ri-On Oh;Yong-Sun Ryu;Chan-Gi Park;Sung-Ki Park
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.261-283
    • /
    • 2023
  • This study aimed to review the performance stability of PET (Polyethylene terephthalate) fiber reinforcing materials among the synthetic fiber types for which the application of performance reinforcing materials to fiber-reinforced concrete is being reviewed by examining short-term and long-term performance changes. To this end, the residual performance was analyzed after exposing the PET fiber to an acid/alkali environment, and the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture by age were analyzed, and the surface of the PET fiber collected from the concrete specimen was examined using a scanning microscope (SEM). The changes in were analyzed. As a result of the acid/alkali environment exposure test of PET fiber, the strength retention rate was 83.4~96.4% in acidic environment and 42.4~97.9% in alkaline environment. It was confirmed that the strength retention rate of the fiber itself significantly decreased when exposed to high-temperature strong alkali conditions, and the strength retention rate increased in the finished yarn coated with epoxy. In the test results of the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture, no reduction in flexural strength was found, and the equivalent flexural strength result also did not show any degradation in performance as a fiber reinforcement. Even in the SEM analysis results, no surface damage or cross-sectional change of the PET reinforcing fibers was observed. These results mean that no damage or cross-section reduction of PET reinforcing fibers occurs in cement concrete environments even when fiber-reinforced concrete is exposed to high temperatures in the early stage or depending on age, and the strength of PET fibers decreases in cement concrete environments. The impact is judged to be of no concern. As the flexural strength and equivalent flexural strength according to age were also stably expressed, it could be seen that performance degradation due to hydrolysis, which is a concern due to the use of PET fiber reinforcing materials, did not occur, and it was confirmed that stable residual strength retention characteristics were exhibited.

Strength of Composit Single-lap Bonded Joints with Different Saltwater Moisture Contents (서로 다른 수분율을 갖도록 염수환경에 노출된 복합재 접착체결부의 강도)

  • Yang, Hyeon-Jeong;Jeong, Mun-Gyu;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.48-54
    • /
    • 2011
  • The effect of moisture contents by salt water on the strength of composite single-lap bonded joints is investigated. The specimens were manufactured in an autoclave by secondary bonding and immersed in the 3.5% salt water of $71^{\circ}C$ for different durations to get various moisture contents; 0, 0.2, 0.5, 1.0, and 2.0%(saturation). A total of 80 joint specimens were tested for 5 different moisture contents and 2 temperature environments. Test results show that while the joint strengths after the saturation of moisture decrease compared to those of dry ones, the strengths of the pre-saturated joint up to 1.0% of moisture content increase in both room and elevated temperature conditions. It is also shown that the strengths of joints tested in elevated temperature are slightly higher than the strength in room temperature by 2-5% until the moisture content reaches 1 %. In contrast, the high temperature strength of the saturated joint is about 5% lower than the room temperature strength.

Probability-Based Performance Prediction of the Nuclear Contaminated Bio-Logical Shield Concrete Walls (원전 방사화 콘크리트 차폐벽의 확률 기반 성능변화 예측)

  • Kwon, Ki-Hyon;Kim, Do-Gyeum;Lee, Ho-Jae;Seo, Eun-A;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.316-322
    • /
    • 2019
  • A probabilistic approach considering uncertainties was employed to investigate the effects on the material characteristics and strength of nuclear bio-logical shield concrete walls, when exposed to long-term radiation during the entire service life. Time-dependent compressive and tensile strengths were estimated by conducting the neutron fluence analysis. For the contaminated concrete, individual compressive and tensile failure probabilities can be possibly evaluated by not only establishing limit-state function withthe predefined critical values but also performing Monte Carlo Simulation. Nuclear power plant types similar to the Kori Unit 1, which was shut off permanently in 2017 after the 40-year operation, were herein selected for an illustrative purpose. Consequently, the probability-based performance assessment and prediction of contaminated concrete walls were well demonstrated.

Surface Properties of Exposed-Aggregate Concrete Depending on Retarder and Water Jet Washing Timing (지연제 살포량과 물씻기 시간이 골재노출 콘크리트의 표면성상에 미치는 영향)

  • Park, Jun Hui;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.169-175
    • /
    • 2015
  • Recently, a stone is preferred as a cladding materials because of its outstanding durability and luxurious character. However, because of running out of natural resources and restriction of production, it is expected that difficulty of stable supply, and thus alternative cladding materials for concrete wall is needed. Therefore, in this research, as an alternative cladding materials, exposed-aggregate concrete is studied using saccharin based retarder. For evaluating factors, changing water-to-cement ratio, dosages of saccharin-based retarder, and timing of water jet washing were tested on the surface properties of exposed-aggregate concrete. As a result, the most favorable surface performance was obtained at 0.75 day after the placing in 25% of water-to-cement ratio, and at one day after the placing in 35 and 55% of water-to-cement ratio, 1.5 day after the placing in 65% of water-to-cement ratio with $24m{\ell}/m^2$ of retarder application.

A Suggestion for Carbonation Prediction Using Domestic Field Survey Data of Carbonation (국내 탄산화 실태자료를 이용한 탄산화 예측식의 제안)

  • Kwon, Seung-Jun;Park, Sang-Sun;Nam, Sang-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.81-88
    • /
    • 2007
  • Among deteriorations of concrete due to environmental exposure, carbonation problems of concrete structures have increased in urban and underground structures. But conventional carbonation-prediction equations that were proposed by foreign references, can not be applied directly to the prediction of carbonation for domestic concrete structures. The purpose of this study is to propose a prediction equation of carbonation depth by considering domestic exposure conditions of concrete structures. For the derivation of the equation, conventional carbonation-prediction equations are analyzed. Through considering the relationship between results of prediction equation and those of various domestic field survey data, the so-called correction factors for different domestic exposure condition of concrete structures are derived. Finally, a carbonation-prediction equation of concrete structures under domestic exposure conditions is proposed with consideration for concrete strength in core and correction factors.