DOI QR코드

DOI QR Code

Probability-Based Performance Prediction of the Nuclear Contaminated Bio-Logical Shield Concrete Walls

원전 방사화 콘크리트 차폐벽의 확률 기반 성능변화 예측

  • Kwon, Ki-Hyon (Department of Infrastructure Safety Research at KICT) ;
  • Kim, Do-Gyeum (Department of Infrastructure Safety Research at KICT) ;
  • Lee, Ho-Jae (Sustainable Infrastructure Research Center at KICT) ;
  • Seo, Eun-A (Department of Infrastructure Safety Research at KICT) ;
  • Lee, Jang-Hwa (Department of Infrastructure Safety Research at KICT)
  • 권기현 (한국건설기술연구원 인프라안전연구본부) ;
  • 김도겸 (한국건설기술연구원 인프라안전연구본부) ;
  • 이호재 (한국건설기술연구원 노후인프라센터) ;
  • 서은아 (한국건설기술연구원 인프라안전연구본부) ;
  • 이장화 (한국건설기술연구원 인프라안전연구본부)
  • Received : 2019.09.23
  • Accepted : 2019.10.11
  • Published : 2019.12.30

Abstract

A probabilistic approach considering uncertainties was employed to investigate the effects on the material characteristics and strength of nuclear bio-logical shield concrete walls, when exposed to long-term radiation during the entire service life. Time-dependent compressive and tensile strengths were estimated by conducting the neutron fluence analysis. For the contaminated concrete, individual compressive and tensile failure probabilities can be possibly evaluated by not only establishing limit-state function withthe predefined critical values but also performing Monte Carlo Simulation. Nuclear power plant types similar to the Kori Unit 1, which was shut off permanently in 2017 after the 40-year operation, were herein selected for an illustrative purpose. Consequently, the probability-based performance assessment and prediction of contaminated concrete walls were well demonstrated.

본 연구에서는 환경적·물리적 인자들의 불확실성을 반영하는 확률론적 접근법을 적용하여, 원자로 가동기간 동안 장시간 방사능에 노출된 원전 콘크리트 차폐벽의 재료적 특징 및 강도에 대한 영향을 평가하였다. 방사화에 따른 콘크리트의 재료적 특성 변화를 조사하였으며, 중성자 노출량과 시간과의 관계를 나타내는 중성자속 분석을 통해 차폐 콘크리트 의 시간의존적 압축강도와 인장강도의 변화를 예측하였다. 압축강도와 인장강도 각각의 변화에 따른 차폐 콘크리트의 파괴확률을 몬테카를로 시뮬레이션(Monte Carlo Simulation) 기법을 적용하여 추정하였다. 본 연구에서는 가동 40년 만인 2017년에 영구정지한 고리 1호기의 해체 안전성 평가를 위해, 이와 유사한 원전유형 및 관련 자료를 활용하여 콘크리트 생체차폐벽의 성능변화를 예측하였다.

Keywords

References

  1. Field, K.G., Remec, I., Pape, Y.L. (2015). Radiation effects in concrete for nuclear power plants - part I: quantification of radiation exposure and radiation effects, Nuclear Engineering and Design, 282(2), 126-143. https://doi.org/10.1016/j.nucengdes.2014.10.003
  2. Hilsdorf, H., Kropp, J., Koch, H. (1978). The effects of nuclear radiation on the mechanical properties of concrete, ACI Special Publication, 55(10), 223-251.
  3. Kontani, O., Ichikawa, Y., Ishizawa, A., Takizawa, M., Sato, O. (2010). Irradiation Effects on Concrete Structure, International Symposium on the Ageing Management and Maintenance of Nuclear Power Plants (ISaG 2010): Proceedings, 173-182, Tokyo, Japan.
  4. Le Pape, Y., Field, K.G., Remec, I. (2015). Radiation effects in concrete for nuclear power plants, part II: perspective from micro-mechanical modeling, Nuclear Engineering and Design, 282(2), 144-157. https://doi.org/10.1016/j.nucengdes.2014.10.014
  5. NRC (2013). A Review of the Effects of Radiation on Microstructure and Properties of Concretes Used in Nuclear Power Plants, NUREG/CR-7171, US Nuclear Regulatory Commission, Washington DC, USA.
  6. Park, K., Kim, H.T., Kwon, T.H., Choi, E. (2016). Effect of neutron irradiation on response of reinforced concrete members for nuclear power plants, Nuclear Engineering and Design, 310, 15-26. https://doi.org/10.1016/j.nucengdes.2016.09.034
  7. Piotrowski, T., Tefelski, D.B., Polanski, A., Skubalski, J. (2012). Monte carlo simulations for optimization of neutron shielding concrete, Central European Journal of Engineering, 2(2), 296-303.