• Title/Summary/Keyword: 노즐 주사

Search Result 18, Processing Time 0.024 seconds

Photocatalytic $TiO_2$ Membrane for Water Treatment fabricated by Aerosol Deposition Method (에어로졸 증착 방법으로 제작된 수처리용 광촉매 $TiO_2$ 멤브레인)

  • Choi, Byung-Kyu;Jung, Jong-Tae;Kim, Jong-Oh;Choi, Won-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.230-231
    • /
    • 2005
  • 본 논문은 광 활성도가 가장 좋은 아나타제(anatase) 상의 광촉매 $TiO_2$ 분말을 상온에서 aerosol deposition 법을 사용하여 박막을 제조하였다. 이런 제조 방법은 aerosol 분말을 초음속으로 분사하여 기판에 증착시키는 방법으로, 저온에서 박막 증착이 가능하여 thermal stress를 줄일 수 있고, 공정 단가를 낮출 수 있다는 장점이 있다. 박막 제조시 aerosol bath의 압력은 500 torr이고, chamber의 압력은 0.4 torr였다. 이런 압력차는 0.4mm$\times$10mm의 크기의 노즐을 통해 $TiO_2$ 나노 분말을 초음속으로 가속하여 기판에 증착시켰다. 박막 제조를 위해 사용한 기판은 수질정화에 응용하기 위해 직경 50mm인 원판 SUS 멤브레인을 사용하였다. SUS 멤브레인 위에 증착되어 있는 $TiO_2$ 박막의 입자 크기와 조성을 알아보기 위해 주사 현미경 (SEM) 및 EDX 분석을 하였고, l$\mu$m 정도의 입자 크기와 수처리 후에도 표면에 증착 되어진 anatase 상의 $TiO_2$ 박막을 확인할 수 있었다.

  • PDF

Synthesis and characterization of ADN based green monopropellants (ADN계열 액상추진제의 합성 및 특성 연구)

  • Kim, Wooram;Kwon, Younja;Jo, Young Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.409-411
    • /
    • 2017
  • 미사일 추력기 체계에 적용되는 하이드라진[$N_2H_4$]추진제는 MSDS-OHS 유해성 분류상 급성독성 물질로서 사용이 제한되고 있는 바, 다양한 대체물질이 개발 중이다. 최근 해외에서 안전성과 취급이 우수한 질산 히드록실암모늄[$NH_3OHNO_3$]과 암모늄 디나이트라마이드[$NH_4N(NO_2)_2$] 기반 단일계 액상추진제가 개발중이며, 이 물질들을 이용한 추력기 시스템 적용 시험이 진행되고 있다. 그러나 저온에서의 연로물질 산성화 반응으로 인한 디나이트라마이드[$N(NO_2)_2{^-}$] 물질의 분해는 나이트레이트[$NO_3{^-}$] 이온 생성을 촉진시키며, 부수적으로 발생하는 침전물은 촉매 및 노즐의 막힘 현상을 유발하므로 추력기 성능의 저해요인으로 작용한다. 그러므로 저온분해 방지를 위한 첨가제 조성 개발 및 열분해 특성 연구가 최근의 관심사이다. 본 연구는 합성/정제/추출한 암모늄 디나이트라마이드 산화제를 주요 조성물로 적용하였으며, 염기성 안정화제를 질량비율 4~5% 첨가하여 산성화 반응을 억제시킨 단일계 액상추진제(KMP) 형태로 제조하였다. 합성한 추진제는 시차주사열량계(DSC)를 이용하여 분해온도를 측정하여 열안정성을 평가해보았다.

  • PDF

A Green Preparation of Drug Loaded PAc-β-CD Nanoparticles from Supercritical Fluid (초임계 유체를 이용한 약물이 담지된 PAc-β-CD 나노 입자의 친환경적인 제조)

  • Jang, Min Ki;Kim, Yong Hun;Kim, Dong Woo;Lee, Si Yun;Lim, Kwon Taek
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Rapid expansion of supercritical solution (RESS) process was used to make molsidomine (MOL) loaded peracetyl-β-cyclodextrin (PAc-β-CD) nanoparticles, which were collected into the air. The effect of the concentration of the drug PAc-β-CD (0.5 and 1 wt%), extraction temperature (45 ~ 60 ℃), nozzle length (5 ~ 20 mm) and internal diameter (ID) (50 ~ 150 μm) of a capillary, and spray distance on the particle size and morphology of the resulting particles were investigated. The interaction of a drug and PAc-β-CD was confirmed by 1H-NMR spectroscopy while the particle size was measured by means of a scanning electron microscope. It was found that increasing the temperature from 45 ℃ to 60 ℃ and decreasing the nozzle diameter from 150 μm to 50 μm had an increasing effect on the average particle size, while increasing the spray distance led to a decrease in the average particle size at a constant pressure of 34.5 MPa and temperature of 45 ℃. With 0.5 wt% of PAc-β-CD, the capillary nozzle of short length (5 mm) and small ID (50 μm) gave the smallest size (165 nm). The obtained nanoparticles showed increased dispersity and solubility in oil. The oil suspension of the inclusion complex showed increased sustainability, which can increase the in-vitro controlled release time of the drug.

Fracture Characteristics of C/SiC Composites for Rocket Nozzle at Elevated Temperature (로켓 노즐목 소재 C/SiC 복합재 고온 파괴 특성)

  • Yoon, Dong Hyun;Lee, Jeong Won;Kim, Jae Hoon;Sihn, Ihn Cheol;Lim, Byung Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.927-933
    • /
    • 2016
  • In a solid propulsion system, the rocket nozzle is exposed to high temperature combustion gas. Hence, choosing an appropriate material that could demonstrate adequate performance at high temperature is important. As advanced materials, carbon/silicon carbide composites (C/SiC) have been studied with the aim of using them for the rocket nozzle throat. However, when compared with typical structural materials, C/SiC composites are relatively weak in terms of both strength and toughness, owing to their quasi-brittle behavior and oxidation at high temperatures. Therefore, it is important to evaluate the thermal and mechanical properties of this material before using it in this application. This study presents an experimental method to investigate the fracture behavior of C/SiC composite material manufactured using liquid silicon infiltration (LSI) method at elevated temperatures. In particular, the effects of major parameters, such as temperature, loading, oxidation conditions, and fiber direction on strength and fracture characteristics were investigated. Fractography analysis of the fractured specimens was performed using an SEM.

Ultrasonic Transducer Design for the Axial Flaw Detection of Dissimilar Metal Weld (이종금속 용접부 축방향 결함 검출을 위한 초음파 탐촉자 설계)

  • Yoon, Byung-Sik;Kim, Yong-Sik;Yang, Seung-Han
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.536-542
    • /
    • 2011
  • Dissimilar metal welds in nuclear power plant are known as very susceptible to PWSCC flaws, and periodically inspected by the qualified inspector and qualified procedure during in-service inspection period. According to field survey data, the majority of their DMWs are located on tapered nozzle or adjacent to a tapered component. These types of configurations restrict examination access and also limit examination volume coverage. Additionally, circumferential scan for axially oriented flaw is very difficult to detect located on tapered surface because the transducer can't receive flaw response from reflector for miss-orientation. To overcome this miss-orientation, it is necessary adapt skewed ultrasonic transducer accomodate tapered surface. The skewed refracted longitudinal ultrasonic transducer designed by modeling and manufactured from the modelling result for axial flaw detection. Experimental results showed that the skewed refracted longitudinal ultrasonic transducer get higher flaw response than non-skewed refracted longitudinal ultrasonic transducer.

Fracture Behavior of Graphite Material at Elevated Temperatures Considering Oxidation Condition (산화환경을 고려한 흑연 내열재의 고온파단특성)

  • Choi, Hoon Seok;Kim, Jae Hoon;Oh, Kawng Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1091-1097
    • /
    • 2015
  • Graphite material has been widely used for making the rocket nozzle throat because of its excellent thermal properties. However, when compared with typical structural materials, graphite is relatively weak with respect to both strength and toughness, owing to its quasi-brittle behavior, and gets oxidized at $450^{\circ}C$. Therefore, it is important to evaluate the thermal and mechanical properties of this material for using it in structural applications. This study presents an experimental method to investigate the fracture behavior of ATJ graphite at elevated temperatures. In particular, the effects of major parameters such as temperature, loading, and oxidation conditions on strength and fracture characteristics were investigated. Uniaxial compression and tension tests were conducted in accordance with the ASTM standard at room temperature, $500^{\circ}C$, and $1,000^{\circ}C$. Fractography analysis of the fractured specimens was carried out using an SEM.

Development of Prussian Blue-laden Magnetic Janus Micro-adsorbents for Remediation of Cs+ Ions in Wastewater (프러시안 블루가 함입된 자성 야누스 미세 흡착제 개발 및 이를 이용한 폐수 내 세슘정화)

  • Ju-Eon Jung;Dong-Hyeon Kyoung;Sung-Min Kang
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.181-190
    • /
    • 2024
  • Here, we develop a centrifugal microfluidic reactor with simple, fast, and high-throughput manner for the generation of magnetic Janus micro-adsorbents (MAs). By using the multi-micronozzle consisting of two separate aligned needles and centrifugal tubes, we have synthesized highly monodispersed Prussian blue- and magnetic nanoparticle-laden micro-adsorbents (PB-MNP-MAs). The enhanced cesium (Cs+) adsorption was demonstrated by conducting the adsorption isotherm and kinetics experiment which can be contributed to the porous nature of the Ca-alginate networks with a high surface area of embedded PB nanoparticles, resulting to perform rapid adsorption activity within 10 min. After Cs+ adsorption process, the as-synthesized PB-MNP-MAs were successfully harvested by introducing the external magnetic fields. Therefore, we believe that our findings can be provided new direction towards the development of advanced functional adsorbents in biological and environmental fields.

Fabrication of Photocatalytic $TiO_2$ Thin Film Using Aerosol Deposition Method (Aerosol Deposition 법을 이용한 광촉매 $TiO_2$ 박막 제조)

  • Choi Byung-Kyu;Min Seok-Hong;Kim Jong-Oh;Kang Kyong-Tae;Choi Won-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.55-59
    • /
    • 2004
  • We fabricates the $TiO_2$ thin film from anatase phase $TiO_2$ powder having good photocatalytic property using aerosol deposition method at room temperature. Aerosol deposition method, which sprays an aerosol powder with ultrasonic velocity and deposits a thin film on substrate at low temperature, has the advantages of low thermal stress and low cost. To fabricate the $TiO_2$ thin film, the aerosol bath pressure and chamber pressure were 500 torr and 0.4 torr, respectively. The difference of aerosol bath pressure and chamber pressure accelerated the $TiO_2$ nano powder to ultrasonic velocity through the nozzle of $0.4 mm{\times}10 mm$ and $TiO_2$ thin film was finally formed. SS mesh with diameter of 50 mm was used as a substrate to apply the $TiO_2$ thin film to water quality purification. The raw powder was dehydrated for the good dispersion of $TiO_2$ powder. To suppress the formation of second particle, the powder was dispersed for 90 min in alcohol bath by ultrasonic treatment and desiccated. The grain size of $1 {\mu}m$ was observed in $TiO_2$ thin film deposited on SUS mesh by scanning electron microscopy (SEM). The anatase phase of $TiO_2$ thin film was also observed by X-ray diffraction (XRD) and the anatase phase of raw powder was nicely maintained after aerosol deposition. The results are applicable to water treatment filter having photocatalytic reaction.

  • PDF