• Title/Summary/Keyword: 노즐확장부

Search Result 21, Processing Time 0.024 seconds

KSR- III 킥모터용 노즐의 열탄성 해석 및 시험

  • Cho, In-Hyun;Oh, Seung-Hyub;Yu, Jae-Suk;Rho, Tae-Ho
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.153-162
    • /
    • 2002
  • This paper predicted the engineering constants of spatially reinforced carbon/ carbon composites and analyzed the mechanical behaviour of the kick motor nozzle. Those equivalent engineering constants are used to analyze the mechanical behaviour of the kick motor nozzle. Because the distribution of equivalent engineering constants is varying as change its structure, we made a program to predict engineering constants of spatially reinforced composites. The kick motor nozzle consists of graphite or spatially reinforced carbon/ carbon composites for the nozzle throat, carbon/ phenol for the nozzle entrance and the expansion part, and steel for the outer surface of the expansion part. The 4-D carbon/ carbon composite shows the smallest deformed shape of the nozzle throat, which has a favorable effect on the rocket thrust, and the most uniform deformation of all nozzle throat materials. In addition to analysis, ground firing tests of 4D C/ C nozzle throat and graphite nozzle throat were performed.

  • PDF

The Experimental Study of Thermal Stress at Supersonic Nozzle (초음속 노즐의 열구조 안전성에 관한 실험적 연구)

  • Kim, Seong-Jin;Han, Hyeok-Seop;Lim, Jae-Hyock;Park, Eui-Yong;Baek, Ki-Bong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.497-500
    • /
    • 2011
  • The experimental study of thermal stress in the solid rocket engine nozzle with two different materials, SCM-440 and STS-630, was evaluated. SCM-440 has lager temperature increasing rate and higher temperature at the nozzle expansion region than STS-630. Thermal barrier efficiency and endurance of Zirconia coating were evaluated after making two more nozzles coated by Zirconica. Both coated materials showed about 70 percent higher thermal barrier efficiency than uncoated nozzles. Therefore, Zirconia coating using plasma spray method was useful in thermal safety at supersonic nozzle.

  • PDF

Evaluation of Nozzle's Combustion Instability Suppression Effect by Linearized Euler Equation (선형 오일러 방정식을 이용한 노즐의 연소불안정 감쇠 효과 평가)

  • Kim, Junseong;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.1-10
    • /
    • 2019
  • The wave motion inside the nozzle is known as one of the major damping elements of the rocket's combustion instability by it's aeroacoustic effects that result from the flow passage through the nozzle throat. These effects can be quantitatively evaluated by the nozzle admittance. In this study, one-dimensional linearized Euler equation was adopted to calculate the nozzle admittance, and trend analysis was performed depending on the nozzle's main design variables. As a result, when nozzle converging part shortens, it is verified that the frequency dependency of the nozzle admittance is decreased due to the widened frequency range with lowered longitudinal nozzle admittance. Also, admittance estimation using the short nozzle theory is not appropriate when the first tangential mode of the pressure perturbation arises.

Characteristics and Key Parameters of Dual Bell Nozzles of the DLR, Germany (독일 DLR의 듀얼 벨 노즐 특성 및 핵심 변수)

  • Kim, Jeonghoon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.952-962
    • /
    • 2015
  • Various types of altitude compensation nozzles have been investigated to develop an effective propulsion system. In order to obtain baseline data for future study of dual bell nozzles, main characteristics and key parameters of dual bell nozzles are summarized and described by analysing DLR dual bell nozzles. DLR's experimental researches show that inflection angle is proportional to transition NPR, and extension length is proportional to side load, but inversely proportional to transition NPR and transition duration. Therefore, the nozzle geometry can be determined through the performance prediction process and thus the optimization process is required to meet performance requirements between parameters.

Technology Review and Development Trends of Dual-Bell Nozzle for Altitude Compensation (고도 보정용 듀얼 벨 노즐 개발 동향과 기술 분석)

  • Choi, Junsub;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.456-465
    • /
    • 2015
  • Dual-bell nozzle can overcome the performance losses of the conventional bell-shaped nozzles which induced by off-design operations with either over-expanded or under-expanded exhaust flow and minimize the losses of the specific impulse. In United States, Rocketdyne analyzed thrust characteristics according to the shape of the expansion nozzle and NASA conducted hot firing tests with various altitudes. DLR, which is one of the research institute of the Europe, is carrying out research for the different cases of inflection angle, nozzle length and expansion ratio. MAI of Russia applied the slot nozzle to the expansion region in order to reduce the performance losses. In Asia, both the Japan and the India are researching on the dual-bell nozzle and Mitsubishi cooperation of the Japan registered its patent. In this paper, concepts and performance of dual-bell nozzle, which can compensate altitude, are investigated and trends of current research are summarized. It is necessary for Korea to research on the dual-bell nozzle for lucrative space development.

Performance Analysis of the Pintle Thruster Using 1-D Simulation -I : Steady State Characteristics (1-D 시뮬레이션을 활용한 핀틀추력기의 성능해석 -I : 정상상태 특성)

  • Kim, Jihong;Noh, Seonghyeon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.304-310
    • /
    • 2015
  • Pintle thrusters use pintle stroke to change nozzle throat area, and this controls thrust. Using MATLAB, one-dimensional simulation has been investigated and the results are compared to those of cold flow tests and computational fluid dynamics for the pintle thruster of Chungnam National University. The prediction based on one-dimensional flow theory shows good agreement with measurements for chamber pressure, but deviates for thrust, partly because of nozzle wall separation. Computational results show that nozzle wall separation occurs at an early stage of nozzle expansion, near the design nozzle throat, for the course of pintle strokes. Empirical thrust prediction incorporates nozzle wall separation, and thus 1-D simulation using empirical thrust prediction showed good results for an early stage of pintle stroke.

Evaluation on the Regenerative Cooling Characteristics in Liquid Rocket Engine of 10tf-thrust using Kerosene and Liquid Oxygen as a Propellant (케로신과 액체산소를 추진제로 하는 10톤급 액체로켓엔진의 재생냉각 특성 평가)

  • Han, Poong-Gyoo;Cho, Won-Kook;Cho, Yong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.111-117
    • /
    • 2004
  • An analytical study was carried out to evaluate the regenerative cooling characteristics in the liquid rocket engine of a 10tf-thrust level using kerosene as a fuel. As a supplementary cooling method, a radiative cooling was applied to the nozzle extension. It was found out from this work that the cooling system with the regenerative and radiation cooling only is not adaptable for the liquid rocket engine of a 10tf-thrust level using kerosene as a fuel for the $2^{nd}$ stage of the space launch vehicle, with the viewpoint of the thermal and thermo-structural instability and the excessive pressure drop in the cooling channel.

A Study on the Cooling Mechanism in Liquid Rocket Engine of 10tf-thrust Level using Kerosene as a Fuel (케로신을 연료로 하는 10톤급 액체로켓엔진의 냉각 기구에 관한 연구)

  • 한풍규;조원국;조용호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.83-88
    • /
    • 2003
  • An analytical study was carried out to evaluate the regenerative cooling characteristics in the liquid rocket engine of a 10tf-thrust level using kerosene as a fuel. As a supplementary cooling method, a radiative cooling was applied to the nozzle extension. It was found out from this work that the cooling system with the regenerative and radiation cooling only is not adaptable as a cooling method for the liquid rocket engine of a 10tf-thrust level using kerosene as a fuel for the 2nd stage of the space launch vehicle. So, additional cooling method, curtain cooling was introduced and analyzed. Curtain cooling was very effective to reduce the thermal and thermo-structural instability.

  • PDF

Starting Transients in Dual-Mode Scramjet Engine (이중 모드 스트램제트 엔진의 시동 천이 과정)

  • Choi, Jeong-Yeol;Noh, Jin-Hyun;Byun, Jong-Ryul;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.981-984
    • /
    • 2011
  • A high-resolution numerical study is carried out to investigate the transient process of the combustion and the shock-train developments in an ethylene-fueled direct-connect dual-mode scramjet combustor. Following the fuel injection, air-throttling is applied at the expansion part of the combustor to provide mass addition to block the flow to subsonic speed. The ignition occurs several ms later when the fuel and air are mixed sufficiently. The pressure build up by the combustion leads to the shock train formation in the isolator section that advances to the exit of the intake nozzle. Then, the air-throttling is deactivated and the exhaust process begins and the situation before the air-throttling is restored. Present simulation shows the detailed processes in the dual-mode scramjet combustor for better understanding of the operation regimes and characteristics.

  • PDF

Development of a 3-D Parallel DSMC Method for Rarefied Gas Flows Using Unstructured Meshes (비정렬 격자계를 이용한 희박기체 영역의 3차원 병렬 직접모사법 개발)

  • Kim, Min Gyu;Gwon, O Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.1-9
    • /
    • 2003
  • In the present study, a 3-D Parallel DSMC method in developed on unstructured meshes for the efficient simulation of rarefied gas flows. Particle tracing between cells in achieved based on a linear shape function extended to three dimensions. For high parallel efficiency, successive domain decomposition is applied to achieve load balancing between processors by accounting for the number of particles. A particle weighting technique is also adopted to handle flows containing gases of significantly dirrerent number densities in the same flow domain. Application is made for flow past a 3-D delta wing and the result is compared with that from experiment and other calculation. Flow around a rocket payload at 100km altitude is also solved and the effect of plume back flow from the nozzle in studied.