• Title/Summary/Keyword: 노즐형상

Search Result 472, Processing Time 0.032 seconds

Specific Impulse Gain for KSLV-II with Combination of Dual Bell Nozzle and Expansion-Deflection Nozzle (듀얼 벨 노즐과 E-D 노즐을 결합한 한국형발사체의 비추력 증가)

  • Moon, Taeseok;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • A basic numerical analysis was performed to confirm the possibility of combining a dual bell nozzle and an Expansion-Deflection(E-D) nozzle. The dual bell nozzle was designed based on the first-stage nozzle of the Korean Space Launch Vehicle that is being developed, and the E-D nozzle concept was applied to the dual bell nozzle. The inlet condition was analyzed by applying eight types of frozen flow analysis, and k-${\omega}$ SST was selected as the turbulence model. The number of optimal grids was obtained as 240,000 through the grid sensitivity analysis. As a result, it was confirmed that the transition altitude increased owing to over-expansion when the E-D nozzle concept was applied to the dual bell nozzle, and the specific impulse gain was obtained at high altitudes compared with the KSLV-II first-stage engine.

Effects of Pintle Shape on Nozzle Flow Characteristics of Variable Nozzle Throat Area Pintle Thrusters (핀틀 형상이 가변 노즐목 핀틀 추력기의 노즐 유동에 미치는 영향)

  • Lee, Yong-Wu;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.275-278
    • /
    • 2010
  • By changing the nozzle throat area during the operation, thrust of a pintle thruster can be adjusted easily such as a liquid propulsion. In this paper, numerical analysis was carried out for SNECMA's pintle thruster with different pintle shapes. Flow field and aerodynamic load changed drastically with pintle shapes. Bore in the pintle decreased aerodynamic load significantly.

  • PDF

A Numerical Analysis of the Partial Admission Supersonic Turbine Losses for Geometic Conditions (형상 변수에 따른 부분 흡입형 초음속 터빈 손실에 관한 수치적 연구)

  • Shin Bong-Gun;Im Kang-Soo;Kim Kui-Soon;Jeong Eun-Hwan;Park Pyun-Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.297-305
    • /
    • 2006
  • In this paper, numerical analyses of the flow within turbine for geometric conditions such as nozzle shape, length of axial clearance, and chamfer angle of leading edge of blade have been performed to investigate the partial admission supersonic turbine losses. Firstly, flow's bending occurred at axial clearance is depended on nozzle shape. Next, the chamfer angle of leading edge affects the strength of shock generated at the leading edge. Finally the expansion and mixsing of the flow within axial clearance are largely depended upon the length of axial clearance. Therefore it is found that aerodynamic losses of turbine is affected by nozzle shape and chamfer angel and that partial admission losses is depended on nozzle shape and the length of axial clearance.

  • PDF

Technology Review and Development Trends of Dual-Bell Nozzle for Altitude Compensation (고도 보정용 듀얼 벨 노즐 개발 동향과 기술 분석)

  • Choi, Junsub;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.456-465
    • /
    • 2015
  • Dual-bell nozzle can overcome the performance losses of the conventional bell-shaped nozzles which induced by off-design operations with either over-expanded or under-expanded exhaust flow and minimize the losses of the specific impulse. In United States, Rocketdyne analyzed thrust characteristics according to the shape of the expansion nozzle and NASA conducted hot firing tests with various altitudes. DLR, which is one of the research institute of the Europe, is carrying out research for the different cases of inflection angle, nozzle length and expansion ratio. MAI of Russia applied the slot nozzle to the expansion region in order to reduce the performance losses. In Asia, both the Japan and the India are researching on the dual-bell nozzle and Mitsubishi cooperation of the Japan registered its patent. In this paper, concepts and performance of dual-bell nozzle, which can compensate altitude, are investigated and trends of current research are summarized. It is necessary for Korea to research on the dual-bell nozzle for lucrative space development.

액체로켓의 노즐 삭마에 대한 실험적 연구

  • Kim, Jong-Wook;Park, Hee-Ho;Kim, Sun-Gi;Kim, Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.21-21
    • /
    • 2000
  • 통상적으로 액체로켓의 노즐은 재생냉각에 의해 고온의 연소가스로부터 보호된다. 그러나 재생냉각의 경우, 시스템에 상당한 투자가 요구되며, 잦은 엔진 결함의 원인을 제공하기도 한다. 최근 들어 액체로켓에 재생냉각을 사용하지 않고, 연소실과 노즐 보호를 위해 삭마재료가 사용되고 있다. 노즐재료에 대한 삭마량과 삭마형상 연구를 위해 500회 이상의 연소실험이 수행되었다. 그러나 연소실험을 통한 삭마특성은 전혀 예측할 수 없는 방향으로 진행되고 있으며, 실험에 사용된 액체로켓의 작동범위가 실제 로켓과 거의 유사하다는 것을 감안한다면, 삭마재질을 로켓에 적용하기 위해서는 상당한 주의가 필요할 것으로 판단된다. 실험변수는 추진제의 공급 순서, 인젝터의 형상, 점화기의 위치, 그리고 액체산소의 공급온도이다.

  • PDF

An experimental study on the flow characteristics of a supersonic turbine cascade as the leading edge shape and the nozzle-cascade gap (초음속 터빈 익렬 앞전 형상 및 노즐-익렬 간격에 따른 유동 특성에 대한 실험적 연구)

  • Cho Jong-Jae;Kim Kui-Soon;Kim Jin-Han;Jeong Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.349-354
    • /
    • 2005
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The flow is visualized by means of a single pass Schlieren system. The supersonic cascade with 2-dimensional supersonic nozzle was tested for various blade leading edge shapes and gaps between the nozzle and cascade. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions are observed.

  • PDF

Study on the Nozzle Surface Regression Mechanism (노즐 표면 삭마 미케니즘에 대한 고찰)

  • Lee Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.141-143
    • /
    • 2006
  • It is well known that there are three mechanisms in the nozzle surface regression, namely ablation, mechanical erosion and chemical corrosion. There are Analogies among these three mechanisms. In order to compare the order of the magnitude of these mechanism, the analogy was adapted and the Mach number of the gas flow was expressed by the nozzle shape(location).

  • PDF

Preliminary Experimental Results of Pressure Control for Modulatable Thruster Applications (노즐목 가변 추력기의 압력제어 기법에 관한 예비실험 결과)

  • Choi, Jae-Sung;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.18-21
    • /
    • 2011
  • In this study, basic research on the pressure control using driven pintle of modulatable thruster is presented. For this purpose, pintle thruster and pintle shape was developed. The actuator model was selected by calculating pintle load using Fluent software. Preliminary unsteady experimental results show that huge pressure oscillation is occurred as the pintle approach toward nozzle wall. From the preliminary experimental results, we could see possibility of pressure control of the modulatable thruster.

  • PDF

Effect of Nozzle Shape on the Performance and Internal Flow of a Cross-Flow Hydro Turbine (횡류수차 노즐형상이 성능과 내부유동에 미치는 영향)

  • Choi, Young-Do;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.45-51
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shape on the performance and internal flow of a cross-flow hydro turbine. CFD analysis for three kinds of nozzle shape is conducted to simulate the effect of nozzle shape. The results reveal that relatively narrow nozzle width is effective to increase the turbine efficiency and output power. Almost output power is achieved at Stage 1. Therefore, optimum design of the nozzle shape is necessary to improve the turbine performance. Recirculation flow in the runner passage decreases the turbine efficiency and output power because the flow make hydraulic loss and collision loss in the region. Air should be put into the runner passage and the recirculating flow should be suppressed by the air layer in the runner.

A quantitative analysis of aerodynamic noise by sound sources from a nozzle inflow (노즐 내부 유동 소음원에 의한 공력 소음의 정량적 분석)

  • Kwongi, Lee;Cheolung, Cheong;Kyeonghun, Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.698-704
    • /
    • 2022
  • In this paper, the radiated aerodynamic noise generated from sound sources of a nozzle inflow is quantitatively investigated and compared with experimental results of externally radiated noise. A high-resolution unsteady compressible Large Eddy Simulation (LES) technique is used to accurately predict the internal and external flow of three types of nozzle shape. Through using the vortex sound source for sound sources, the geometry of nozzle neck is identified as most significant aerodynamic noise sources. For validation of quantitative analysis, the vortex sound source intensity of internal nozzle flow is compared with results of external radiated noise of calculation and experiment.