• Title/Summary/Keyword: 노이즈 제거

Search Result 607, Processing Time 0.038 seconds

The development of a bluetooth based portable wireless EEG measurement device (블루투스 기반 휴대용 무선 EEG 측정시스템의 개발)

  • Lee, Dong-Hoon;Lee, Chung-Heon
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.16-23
    • /
    • 2010
  • Since the interest of a brain science research is increased recently, various devices using brain waves have been developed in the field of brain training game, education application and brain computer interface. In this paper, we have developed a portable EEG measurement and a bluetooth based wireless transmission device measuring brain waves from the frontal lob simply and conveniently. The low brain signals about 10~100${\mu}V$ was amplified into several volts and low pass, high pass and notch filter were designed for eliminating unwanted noise and 60Hz power noise. Also, PIC24F192 microcontroller has been used to convert analog brain signal into digital signal and transmit the signal into personal computer wirelessly. The sampling rate of 1KHz and bluetooth based wireless transmission with 38,400bps were used. The LabVIEW programing was used to receive and monitor the brain signals. The power spectrum of commercial biopac MP100 and that of a developed EEG system was compared for performance verification after the simulation signals of sine waves of $1{\mu}V$, 0~200Hz was inputed and processed by FFT transformation. As a result of comparison, the developed system showed good performance because frequency response of a developed system was similar to that of a commercial biopac MP100 inside the range of 30Hz specially.

Text Region Extraction from Videos using the Harris Corner Detector (해리스 코너 검출기를 이용한 비디오 자막 영역 추출)

  • Kim, Won-Jun;Kim, Chang-Ick
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.646-654
    • /
    • 2007
  • In recent years, the use of text inserted into TV contents has grown to provide viewers with better visual understanding. In this paper, video text is defined as superimposed text region located of the bottom of video. Video text extraction is the first step for video information retrieval and video indexing. Most of video text detection and extraction methods in the previous work are based on text color, contrast between text and background, edge, character filter, and so on. However, the video text extraction has big problems due to low resolution of video and complex background. To solve these problems, we propose a method to extract text from videos using the Harris corner detector. The proposed algorithm consists of four steps: corer map generation using the Harris corner detector, extraction of text candidates considering density of comers, text region determination using labeling, and post-processing. The proposed algorithm is language independent and can be applied to texts with various colors. Text region update between frames is also exploited to reduce the processing time. Experiments are performed on diverse videos to confirm the efficiency of the proposed method.

Application of DINEOF to Reconstruct the Missing Data from GOCI Chlorophyll-a (GOCI Chlorophyll-a 결측 자료의 복원을 위한 DINEOF 방법 적용)

  • Hwang, Do-Hyun;Jung, Hahn Chul;Ahn, Jae-Hyun;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1507-1515
    • /
    • 2021
  • If chlorophyll-a is estimated through ocean color remote sensing, it is able to understand the global distribution of phytoplankton and primary production. However, there are missing data in the ocean color observed from the satellites due to the clouds or weather conditions. In thisstudy, the missing data of the GOCI (Geostationary Ocean Color Imager) chlorophyll-a product wasreconstructed by using DINEOF (Data INterpolation Empirical Orthogonal Functions). DINEOF reconstructs the missing data based on spatio-temporal data, and the accuracy was cross-verified by removing a part of the GOCI chlorophyll-a image and comparing it with the reconstructed image. In the study area, the optimal EOF (Empirical Orthogonal Functions) mode for DINEOF wasin 10-13. The temporal and spatialreconstructed data reflected the increasing chlorophyll-a concentration in the afternoon, and the noise of outliers was filtered. Therefore, it is expected that DINEOF is useful to reconstruct the missing images, also it is considered that it is able to use as basic data for monitoring the ocean environment.

Development of Automatic Crack Detection using the Gabor Filter for Concrete Structures of Railway Tracks (가버 필터를 사용한 철도 콘크리트 궤도 도상의 자동 균열 감지 개발)

  • Na, Yong-Hyoun;Park, Mi-Yun;Park, Ji-Soo;Park, Sung-Baek;Kwon, Se-Gon
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.458-465
    • /
    • 2018
  • Purpose: Concrete track that affects on railway safety can detect cracks using image processing technique. However, since a condition of concrete track and surface noisy are obstructed to detect cracks, there is a need for a way to remove them effectively. Method: In this study, we proposed an image processing to detect cracks effectively for Korean railway and verified its performance through experiment. We developed image acquisition system for capture a railway concrete track and acquired railway concrete track images, randomly selected 2000 images and detected cracks in the image process using proposed Gabor Filter Bank methods. Results: As a result, 94% of detection rate are matched to the actual cracks in same quality and format railway concrete track image. Conclution: The crack detection method using Garbor Filter Bank was confirmed to be effective for crack image including noise in the Korean railway concrete track. This system is expected to become an automated maintenance system in the existing human-centered railway industry.

Heart Rate Signal Extraction by Using Finger vein Recognition System (지정맥 인식 시스템을 이용한 심박신호 검출)

  • Bok, Jin Yeong;Suh, Kun Ha;Lee, Eui Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.701-709
    • /
    • 2019
  • Recently, heart rate signal, which is one of biological signals, have been used in various fields related to healthcare. Conventionally, most of the proposed heart rate signal detection methods are contact type methods, but there is a problem of discomfort that the subject have to contact with the device. In order to solve the problem, detection study by non-contact method has been progressed recently. The detected heart rate signal can be used for finger vein liveness detection and various application using heart rate. In this paper, we propose a method to obtain heart rate signal by using finger vein imaging system. The proposed method detected the signal from the changes of the brightness value in the time domain of the infrared finger vein images and converted it into the frequency domain using the image processing algorithm. After the conversion, we removed the noise not related to the heart rate signal through band-pass filtering. In order to evaluate the accuracy of the signal, we analyzed the correlation with the signal obtained simultaneously with the finger vein acquisition device and contact type PPG sensor approved by KFDA. As a result, it was possible to confirm that the heart rate signal detected in non-contact method through the finger vein image coincides with the waveform of actual heart rate signal.

Clustering Performance Analysis of Autoencoder with Skip Connection (스킵연결이 적용된 오토인코더 모델의 클러스터링 성능 분석)

  • Jo, In-su;Kang, Yunhee;Choi, Dong-bin;Park, Young B.
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.403-410
    • /
    • 2020
  • In addition to the research on noise removal and super-resolution using the data restoration (Output result) function of Autoencoder, research on the performance improvement of clustering using the dimension reduction function of autoencoder are actively being conducted. The clustering function and data restoration function using Autoencoder have common points that both improve performance through the same learning. Based on these characteristics, this study conducted an experiment to see if the autoencoder model designed to have excellent data recovery performance is superior in clustering performance. Skip connection technique was used to design autoencoder with excellent data recovery performance. The output result performance and clustering performance of both autoencoder model with Skip connection and model without Skip connection were shown as graph and visual extract. The output result performance was increased, but the clustering performance was decreased. This result indicates that the neural network models such as autoencoders are not sure that each layer has learned the characteristics of the data well if the output result is good. Lastly, the performance degradation of clustering was compensated by using both latent code and skip connection. This study is a prior study to solve the Hanja Unicode problem by clustering.

Detection of Toluene Hazardous and Noxious Substances (HNS) Based on Hyperspectral Remote Sensing (초분광 원격탐사 기반 위험·유해물질 톨루엔 탐지)

  • Park, Jae-Jin;Park, Kyung-Ae;Foucher, Pierre-Yves;Kim, Tae-Sung;Lee, Moonjin
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.623-631
    • /
    • 2021
  • The increased transport of marine hazardous and noxious substances (HNS) has resulted in frequent HNS spill accidents domestically and internationally. There are about 6,000 species of HNS internationally, and most of them have toxic properties. When an accidental HNS spill occurs, it can destroys the marine ecosystem and can damage life and property due to explosion and fire. Constructing a spectral library of HNS according to wavelength and developing a detection algorithm would help prepare for accidents. In this study, a ground HNS spill experiment was conducted in France. The toluene spectrum was determined through hyperspectral sensor measurements. HNS present in the hyperspectral images were detected by applying the spectral mixture algorithm. Preprocessing principal component analysis (PCA) removed noise and performed dimensional compression. The endmember spectra of toluene and seawater were extracted through the N-FINDR technique. By calculating the abundance fraction of toluene and seawater based on the spectrum, the detection accuracy of HNS in all pixels was presented as a probability. The probability was compared with radiance images at a wavelength of 418.15 nm to select abundance fractions with maximum detection accuracy. The accuracy exceeded 99% at a ratio of approximately 42%. Response to marine spills of HNS are presently impeded by the restricted access to the site because of high risk of exposure to toxic compounds. The present experimental and detection results could help estimate the area of contamination with HNS based on hyperspectral remote sensing.

Development of Registration Post-Processing Technology to Homogenize the Density of the Scan Data of Earthwork Sites (토공현장 스캔데이터 밀도 균일화를 위한 정합 후처리 기술 개발)

  • Kim, Yonggun;Park, Suyeul;Kim, Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.689-699
    • /
    • 2022
  • Recently, high productivity capabilities have been improved due to the application of advanced technologies in various industries, but in the construction industry, productivity improvements have been relatively low. Research on advanced technology for the construction industry is being conducted quickly to overcome the current low productivity. Among advanced technologies, 3D scan technology is widely used for creating 3D digital terrain models at construction sites. In particular, the 3D digital terrain model provides basic data for construction automation processes, such as earthwork machine guidance and control. The quality of the 3D digital terrain model has a lot of influence not only on the performance and acquisition environment of the 3D scanner, but also on the denoising, registration and merging process, which is a preprocessing process for creating a 3D digital terrain model after acquiring terrain scan data. Therefore, it is necessary to improve the terrain scan data processing performance. This study seeks to solve the problem of density inhomogeneity in terrain scan data that arises during the pre-processing step. The study suggests a 'pixel-based point cloud comparison algorithm' and verifies the performance of the algorithm using terrain scan data obtained at an actual earthwork site.

Performance Measurement of The Hybrid Sheet with Dual Function of Electromagnetic-Shielding and Heat-Dissipating (전자파차폐 및 방열 기능을 가지는 하이브리드시트 성능측정)

  • Ahn, Sung-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.530-536
    • /
    • 2021
  • This paper presents the performance measurement results of a hybrid sheet with both shielding and heat dissipation functions developed by laminating copper mesh sheets and natural graphite sheets, which are used widely as electromagnetic shielding and heat-dissipating materials in electronic devices, without a pressure-sensitive adhesive (PSA). The results were compared by measuring the vertical and horizontal thermal conductivity with two other products to confirm the heat dissipation performance. A radiation emission test confirmed the electromagnetic shielding performance using a 3m electromagnetic anechoic chamber according to the CISPR 11 standard. In the case of vertical thermal conductivity, the proposed hybrid sheet was approximately 8.63 times higher than that of an aluminum sheet with heat dissipation coating and 18.7 times higher than that of a copper sheet laminated with artificial graphite with PSA. The proposed hybrid sheet was approximately 0.64 times that of the sheet, and approximately 1.76 times that of the heat-dissipated aluminum sheet in case of horizontal thermal conductivity. Measurements after applying each sheet in the same heat source revealed the proposed hybrid sheet to have the best heat dissipation performance. The radiation emission test showed that significantly radiation noise had been removed.

Evaluation of Debonding Defects in Railway Concrete Slabs Using Shear Wave Tomography (전단파 토모그래피를 활용한 철도 콘크리트 궤도 슬래브 층분리 결함 평가)

  • Lee, Jin-Wook;Kee, Seong-Hoon;Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.11-20
    • /
    • 2022
  • The main purpose of this study is to investigate the applicability of the shear wave tomography technology as a non-destructive testing method to evaluate the debonding between the track concrete layer (TCL) and the hydraulically stabilized based course (HSB) of concrete slab tracks for the Korea high-speed railway system. A commercially available multi-channel shear wave measurement device (MIRA) is used to evaluate debonding defects in full-scaled mock-up test specimen that was designed and constructed according to the Rheda 200 system. A part of the mock-up specimen includes two artificial debonding defects with a length and a width of 400mm and thicknesses of 5mm and 10mm, respectively. The tomography images obtained by a MIRA on the surface of the concrete specimens are effective for visualizing the debonding defects in concrete. In this study, a simple image processing method is proposed to suppress the noisy signals reflected from the embedded items (reinforcing steel, precast sleeper, insert, etc.) in TCL, which significantly improves the readability of debonding defects in shear wave tomography images. Results show that debonding maps constructed in this study are effective for visualizing the spatial distribution and the depths of the debondiing defects in the railway concrete slab specimen.