• Title/Summary/Keyword: 네트워크 RTK 측량

Search Result 28, Processing Time 0.029 seconds

A Study on the Site Calibration of Network RTK Surveying (네트워크 RTK 측량의 사이트 캘리브레이션 방안에 관한 연구)

  • Choi, Han Jun;Lee, Byoungkil;Yeon, Sang Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.1
    • /
    • pp.99-107
    • /
    • 2013
  • With the expansion of the development and use of surveying equipment recently, by the establishment of infrastructure for network RTK surveying of the NGII, network RTK surveying has been widely used in surveying industry. Currently, in public surveying regulations, site calibration with minimum 5 evenly spaced bench marks is needed for using network RTK surveying results as leveling. But the range between and the number of bench marks for site calibration can be varied according to the geoid undulation. In this study, in order to verify this, Incheon area having regular geoid undulation and Taebaek area having irregular geoid undulation are selected as study area and network RTK surveying have been done. Then the accuracy of site calibration by range between and the number of bench marks have been compared. As a result of this study, in order to meet a tolerance of vertical precision (0.1m) that has been set in public surveying regulations, there is a necessity for improving the regulations so that the range and number of bench marks, to be used for site calibration of network RTK surveying, can be applied complementarily.

A Study on Accuracy Evaluation and Accuracy Improvement in Cadastral Re-survey Surveying Method (지적재조사 측량방법의 정확도 비교 및 정확도 향상방안 연구)

  • Lee, Suk Bae;Auh, Su Chang;Suh, Yong Woon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.39-46
    • /
    • 2014
  • Network RTK GNSS positioning technique which has been developed to overcome the limitation of Single reference station RTK is used widely in the field of general surveying, cadastre surveying and engineering surveying due to the high accuracy and efficiency. It is specified Network RTK, Single reference station RTK and Static of GNSS as a surveying method in the regulation of Cadastre Re-survey Surveying. In this study, Network RTK and Static GNSS surveying were accomplished at cadastral re-survey field in Hadong, Gyeongnam and the surveying results were compared. Also, to analyze the performance of site calibration in Network RTK surveying, two types of Network RTK surveying with and without site calibration were accomplished and the results was compared. The research result shows that average positioning error between Network RTK(VRS) without site calibration and Static surveying result is 2.44cm and 1.53cm respectively and average positioning error between Network RTK(VRS) with site calibration and Static surveying result is 0.19cm and 0.82cm respectively at two zone. So, it was proved the effect of calibration in network RTK(VRS) surveying.

Application Method of Site Calibration Function of Network RTK Survey for Local Coordinate System Result Analysis (지역좌표계 성과분석을 위한 네트워크 RTK측량 사이트 캘리브레이션 기능 적용 방안)

  • Shin, Chang Soo;Choi, Yun Soo;Park, Moon Jae
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.95-110
    • /
    • 2017
  • The network RTK surveying has been widely used in the field of cadastral surveys in recent years, and its use is gradually expanding. As a result of the implementation of GPS static surveys by civilian companies in accordance with the progress of the cadastral surveys and gradual civilian transfer plans and cadastral surveys, there has been an increase in the number of civilian companies performing surveys. In this paper, we describe the process of applying the results of analysis of conformity using the network RTK site calibration function on the local coordinate system to the GPS static surveying of the cadastral reference points in Anyang city. In addition, the measurement results of the network RTK site calibration function and the results of the GPS static surveying network reconciliation in the local coordinate system were compared, and the performance was determined within 0.04m maximum of RMSE(Root Mean Square Error), and further study on the application method is needed.

Accuracy Evaluation of VRS RTK Surveys Inside the GPS CORS Network Operated by National Geographic Information Institute (국토지리정보원 VRS RTK 기준망 내부 측점 측량 정확도 평가)

  • Kim, Hye-In;Yu, Gi-Sug;Park, Kwan-Dong;Ha, Ji-Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.139-147
    • /
    • 2008
  • The positioning accuracies tend to deteriorate as the distance between the rover and the reference station increases in the Real-Time Kinematic (RTK) surveys using Global Positioning System (GPS). To solve this problem, the National Geographic Information Institute (NGII) of Korea has installed Virtual Reference System (VRS), which is one of the network-based RTK systems. In this study, we conducted the accuracy tests of the VRS-RTK surveys. We surveyed 50 control points inside the NGII's GPS Continuously Operating Reference Stations (CORS) network using the VRS-RTK system, and compared the results with the published coordinates to verify the positioning accuracies. We also conducted the general RTK surveys at the same control points. The results showed that the positioning accuracy of the VRS-RTK was comparable to that of the general RTK, because the horizontal positioning accuracy was 3.1 cm while that of general RTK was 2.0 cm. Also the vertical positioning accuracy of VRS-RTK was 6.8 cm.

Accuracy Evaluation of the Height Determined by Network-RTK VRS Positioning (네트워크 RTK VRS 측량에 의한 표고정확도 평가)

  • Lee, Suk Bae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.55-63
    • /
    • 2013
  • Network-RTK GPS positioning technique based on national CORS(Continuous Operating Reference Station) and wireless internet access as like VRS and FKP was developed to overcome the limitations of traditional RTK technique. In Korea, NGII(National Geographic Information Institute) provides network-RTK service based on 51 CORS and mobile internet network. The purpose of this study is the accuracy evaluation of the height determined by GPS VRS technique based on network-RTK, So, in this study GPS VRS positioning was accomplished through 1st level BM line located at Sancheong~Jinju and $2^{nd}$ level BM line located at Geochang~Sancheong and the average error of the each BM line was calculated as 2.15cm and 1.80cm respectively. This result shows that GPS VRS height positioning can be used in $3^{rd}$ and 4th public BM leveling and also work regulation is needed to apply the GPS VRS height positioning.

Positioning Accuracy Analysis According to the Change of Blockage Location and GNSS Signal Combination (GNSS 위성신호조합과 장애물 근접에 따른 위치정확도 분석)

  • Lee, Jae One;Yun, Bu Yeol;Park, Chi Young;Choi, Hye Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.39-46
    • /
    • 2014
  • Network RTK positioning, one of GNSS positioning systems, is currently very popular due to its easy operation and low cost. However, the network RTK positioning unquestioningly accepts observation result acquired with an ambiguity fixed-solution regardless of different field conditions and situations, and then it is applied to the practice. This paper, therefore, has investigated the effects of field conditions obtained network RTK survey data for the area with obstacles on the variation of positioning accuracy. Being explained in detail, after conducting survey by GPS-only positioning and combined GPS/GLONASS observations giving changes to the distance from obstacles and elevation angles, and then accuracy results of each positioning method were compared each other. As a result, while GPS-only point positioning method showed more stable results than combined GPS/GLONASS method in the areas with no obstacles, combined method gave better result than GPS-only for the areas with presence of obstacles. Based on the results of this experiment, when the further study is conducted with a variety of different field conditions affecting the survey accuracy, it can be expected that the accuracy of network RTK survey method would become to more popular.

Design of Monitoring System for Network RTK (네트워크 RTK 환경에 적합한 감시 시스템 설계)

  • Shin, Mi-Young;Han, Young-Hoon;Ko, Jae-Young;Cho, Deuk-Jae
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.479-484
    • /
    • 2015
  • Network RTK is a precise positioning technique using carrier phase correction data from reference stations within the network, and is constantly being researched for improved performance. However, the study for the system accuracy has been performed but system integrity research has not been done as much as system accuracy, because network RTK has been mainly used on surveying for static or kinematic positioning. In this paper, adequate monitoring system for network RTK is designed as basis research for integrity monitoring on network RTK. To this, fault tree on network RTK is analyzed, and a countermeasure is prepared to detect and identify the each fault items. Based these algorithms, monitoring system to use on central processing facility is designed for network RTK service.

Accuracy Assessment of Aerial Triangulation of Network RTK UAV (네트워크 RTK 무인기의 항공삼각측량 정확도 평가)

  • Han, Soohee;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.663-670
    • /
    • 2020
  • In the present study, we assessed the accuracy of aerial triangulation using a UAV (Unmanned Aerial Vehicle) capable of network RTK (Real-Time Kinematic) survey in a disaster situation that may occur in a semi-urban area mixed with buildings. For a reliable survey of check points, they were installed on the roofs of buildings, and static GNSS (Global Navigation Satellite System) survey was conducted for more than four hours. For objective accuracy assessment, coded aerial targets were installed on the check points to be automatically recognized by software. At the instance of image acquisition, the 3D coordinates of the UAV camera were measured using VRS (Virtual Reference Station) method, as a kind of network RTK survey, and the 3-axial angles were achieved using IMU (Inertial Measurement Unit) and gimbal rotation measurement. As a result of estimation and update of the interior and exterior orientation parameters using Agisoft Metashape, the 3D RMSE (Root Mean Square Error) of aerial triangulation ranged from 0.153 m to 0.102 m according to the combination of the image overlap and the angle of the image acquisition. To get higher aerial triangulation accuracy, it was proved to be effective to incorporate oblique images, though it is common to increase the overlap of vertical images. Therefore, to conduct a UAV mapping in an urgent disaster site, it is necessary to acquire oblique images together rather than improving image overlap.

Availability Evaluation of FKP-RTK Positioning for Construction Survey Application (FKP-RTK 측위의 시공측량 적용성 실험)

  • Kim, In Seup
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.463-469
    • /
    • 2013
  • In addition to the VRS-RTK service, FKP-RTK service launched recently in Korea however unlike VRS, it is not yet applied to various surveying tasks. VRS system is operated in two way communication over the mobile Internet. When user send rover position data to network RTK server and the server provides correction data to users continuously. It causes to increase communications load and makes delaying or failure in data transmission depends on server capacity and number of concurrent users. In contrast, since FKP system is one way communication system, user only receives correction data and area correction parameters for the selected Continuous Reference Station from the server. Thus, there is no limitation to the number of concurrent users in FKP system and it would be more efficient than VRS system in terms of economic. To this end, we performed FKP-RTK test for Unified Control Points and Urban Control Points where are located at 5 regions in Korea to evaluate the accuracy. As a result, almost of FKP positioning data are in error range of ${\pm}6.2cm$ in horizontal and it would be enough for construction survey such as for earth work in limited except precise structure survey.

Comparison of Network-RTK Surveying Methods at Unified Control Stations in Incheon Area (인천지역 통합기준점에서 Network-RTK 측량기법의 비교)

  • Lee, Yong Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.469-479
    • /
    • 2014
  • N-RTK(Network based RTK) methods are able to improve the accuracy of GNSS positioning results through modelling of the distance-dependent error sources(i.e. primarily the ionospheric and tropospheric delays and orbit errors). In this study, the comparison of the TTFF(Time-To-Fix-First ambiguity), accuracy and discrepancies in horizontal/vertical components of N-RTK methods(VRS and FKP) with the static GNSS at 20 Unified Control Stations covering Incheon metropolitan city area during solar storms(Solar cycle 24 period) were performed. The results showed that the best method, compared with the statics GNSS survey, is the VRS, followed by the FKP, but vertical components of both VRS and FKP were approximately two times bigger than horizontal components. The reason for this is considered as the ionospheric scintillation because of irregularities in electron density, and the tropospheric scintillation because of fluctuations on the refractive index take the place. When the TTFF at each station for each technique used, VRS gave shorter initialization time than FKP. The possible reasons for this result might be the inherent differences in principles, errors in characteristics of different correction networks, interpolating errors of FKP parameters according to the non-linear variation of the dispersive and non-dispersive errors at rover when considering both domestic mobile communication infra and the standardized high-compact data format for N-RTK. Also, those test results revealed degradation of positing accuracy, long initialization time, and sudden re-initialization, but more failures to resolve ambiguity during space weather events caused by Sunspot activity and solar flares.