• Title/Summary/Keyword: 냉매 22

Search Result 235, Processing Time 0.019 seconds

Comparison of Condenser Characteristics using R410A and R22 under the Same Inlet Temperature Condition (동일한 유입온도조건에서 R410A와 R22 적용 응축기의 특성비교)

  • 김창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1049-1059
    • /
    • 2003
  • R410A is considered as an alternative refrigerant to R22 for air conditioners. An experimental investigation was made to study the characteristics of the heat transfer and pressure drop for R410A flowing in a fin-and-tube heat exchanger used for commercial air-conditioning units. Experiments were carried out under the conditions of inlet refrigerant temperature of 6$0^{\circ}C$ and refrigerant mass flux varying from 150 to 250 kg/$m^2$s for refrigerant side. The inlet air has dry bulb temperature of 35$^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.6 m/s. Experiments show that air velocity decreased by 16% is needed for R410A than that of R22 for subcooling temperature of 5$^{\circ}C$, which resulted in air-side pressure drop decrease of 15% for R410A as compared to R22. As a consequence, in order to provide the same design condition of a condenser, the fan requires lower electric-power consumption with R410A than that with R22.

Condensing Heat Transfer Charactristics of R-22 Alternative Refrigerants on Water Sources Heat Pump (수열원 펌프에서의 R-22 대체냉매의 응축열전달특성에 관한 연구)

  • 김기수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.285-293
    • /
    • 1998
  • This paper presents an experimental study on condensing heat transfer characteristics of R-22 alternative refrigerants, R-290 and R-410a on water sources heat pump. The apparatus mainly consisted of vapor pump condenser used to the test section evaporator manual expansion valve and measuring device. Test section constructed a smoothed tube of 10.07 mm ID and 12.7mm OD with a total length 6,300 mm was horizontal double pipe counterflow condenser. The refrigerants R-22, R-290 and R-410a were cooled by a coolant circulated in a surrounding annulus. Experimental range of mass velocities was changed from about 100 to 300 kg/($m^2$.s) and inlet quality 1.0 The credibility of experimental apparatus was 6 percent between heating capacity and cooling capacity added to compressor shaft power. The condensing heat transfer coefficients were increased with increasing mass velocity. However in case of R-290 they were more increasing than those of R-410a and R-22 Comparing the heat transfer coefficient between the experimental data and other's data the Cavallini-Zecchin's data was revealed to more similar prediction of author's experimental results on the average heat transfer coefficients.

  • PDF

Experimental study for the pressure drop of R-22 and R-4O7C during the condensation in the micro-fin tubes (마이크로핀관내에서 R-22와 R-4O7C의 응축압력강하 특성에 관한 실험적 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.715-722
    • /
    • 2007
  • Experiments were conducted for the investigation of pressure drop inside horizontal micro-fin tubes during the condensation of R-22 and ternary refrigerant. R-407C(HFC-32/125/134a 23/25/62 wt%) as a substitute of R-22. The condenser is a double-tube and counterflow type heat exchanger which is consisted with micro-fin tubes having 60 fins with a length of 4000mm, outer diameter of 9.53mm and fin height of 0.2mm. The mass velocity varied from 102.1 to $301.0kg/(m^2{\cdot}s)$ and inlet quality was fixed as 1.0. From the experimental results. the pressure drop for R-407C was considerably higher than that for R-22. The value of PF(penalty factor) for both of refrigerants was not bigger than the ratio of micro-fin tube area to smooth tube area. Based on the experimental data. correlation was Proposed for the prediction of frictional pressure drop during the condensation of R-22 and R-407C inside horizontal micro-fin tubes.

Experimental Study on R-22 Condensation Heat Transfer Characteristic in Plate and Shell Heat Exchanger (Plate and Shell 열교환기 내의 R-22 응축열전달 특성에 관한 실험적 연구)

  • Seo, Mu-Gyo;Park, Jae-Hong;Kim, Yeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.860-867
    • /
    • 2001
  • In this study, condensation heat transfer experiments were conducted with plate and shell heat exchangers(P&SHE) using R-22. An experimental refrigerant loop has been established to measure the condensation heat transfer coefficient of R-22 in a vertical P&SHE. Two vertical counter flow channels were formed in the P&SHE by three plates of geometry with a corrugated trapezoid shape of a chevron angle of 45°. Downflow of the condensing R-22 in one channel releases heat to the cold upflow of water in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality of R-22 on the measured data were explored in detail. The results indicate that at a higher vapor quality the condensation heat transfer coefficients are significantly higher. A rise in the refrigerant mass flux causes an increase in the h(sub)r. Also, a rise in the average heat flux causes an increase in the h(sub)r. Finally, at a higher system pressure the h(sub)r is found to be slightly lower. Correlation is also provided for the measured heat transfer coefficients in terms of the Nusselt number.

Comparison of Condenser Characteristics Using R407C and R22 on the Same Inlet Temperature Condition (동일한 유입온도조건에서 R407C와 R22 적용 응축기의 특성비교)

  • 김창덕;전창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.7
    • /
    • pp.595-603
    • /
    • 2003
  • R407C is considered as an alternative refrigerant to R22 for air conditioners. An experimental investigation was made to study the characteristics of the condensation heat transfer and pressure drop for R407C flowing in a fin-and-tube heat exchanger used for commercial air-conditioning units. Experiments were carried out under the conditions of inlet refrigerant temperature of 6$0^{\circ}C$ and refrigerant mass flux varying from 150 to 250 kg/$m^2$s for refrigerant side. The inlet air has dry bulb temperature of 35$^{\circ}C$ , relative humidity of 50% and air velocity varying from 0.8 to 1.6 m/s. Experiments show that air velocity increased by 25% is needed for R407C than that of R22 for subcooling temperature of 5$^{\circ}C$, which resulted in air-side pressure drop increase of 28.8% for R407C as compared to R22. As a consequence, in order to provide the same design condition of a condenser, the fan requires higher electric-power consumption with R407C than that with R22.

A Study on the Temperature Characteristics at the Inlet and the Outlet Pipes of a Refrigerator Drain Condenser (냉장고 배출수 응축기 입출구 배관에서의 온도 특성에 관한 연구)

  • Ha, Ji Soo;Kim, Tae Kwon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.247-255
    • /
    • 2014
  • The present study was conducted to elucidate the characteristics of temperature at the inlet and outlet pipes of a refrigerator drain condenser and suggest the method to predict the temperature of the refrigerant at the inlet and outlet pipes of the drain condenser. For this purpose, a built in style refrigerator was installed in a constant temperature chamber to measure temperatures at the inlet and outlet pipes of the drain condenser. From the results of the present analysis, it could be seen that the measured temperatures changed from $37^{\circ}C$ to $46^{\circ}C$ and the actual refrigerant temperatures were higher than the measured temperatures with the difference magnitude of $8^{\circ}C$ to $22^{\circ}C$. The present study suggested that the temperatures of the refrigerator could be calculated with the measured temperatures by introducing curve fitting of the measured temperature. The predicted refrigerant temperatures by the present study had the accuracy within 6% error of the actual refrigerant temperatures.

Treatment of Waste Solution of Waste Refrigerant Decomposition Process Using Atmospheric Pressure Plasma (대기압 플라즈마를 이용한 폐냉매 분해 공정 폐수 처리)

  • Ko, Eun Ha;Yoo, Hyeonseok;Jung, Yong-An;Park, Dong-Wha;Kim, Dong-Wook;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.479-483
    • /
    • 2018
  • Our group reported the thermal decomposition of R-22 ($CHClF_2$) refrigerants by nitrogen thermal plasma in previous studies. However, it was proposed that the wastewater generated from the end part of the process contains high concentration of fluoride ion which is a component of R-22. The additional post-treatment process to neutralize the $F^-$ ions in the wastewater was investigated in this study. The wastewater generated through the decomposition of R-22 with the same procedure in the previous work was treated using the neutralizer, $Ca(OH)_2$, and the atmospheric pressure plasma jet (APPJ) independently as a post-treatment process. Wastewater samples were collected directly after the treatment for ion-chromatography analysis to trace the change of the concentration of $F^-$ ion in the wastewater. The fluoride concentration in the wastewater showed the highest value when the single water was used as a neutralizer, and the concentration of fluoride in the wastewater was dramatically reduced when the post-treatments were performed.

Evaporating heat transfer characteristics of R-22 alternative hydrocarbon refrigerants at heat exchanger using grooved inner tube (내면 핀관을 사용하는 열교환기에서 R-22 대체 탄화수소계 냉매의 증발 열전달 특성)

  • 홍진우;박승준;노건상;구학근;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.414-420
    • /
    • 2000
  • In this paper, evaporation heat transfer characteristics at a inner grooved tube were studied using a new natural refrigerants R-290, R-600a and HCFC refrigerant R-22. Experiments were performed in the inner tube with outside diameter of 12.70mm, having 75 fins with a fin height of 0.25mm. The following results were obtained from this research. On the evaporating heat transfer characteristics, the maximum increment of heat transfer coefficient was found in R-290. Average heat transfer coefficient was obtained the maximum value in R-290 and the minimum value in R-22. It reveals that the natural refrigerant can be used as a substitute for R-22. In the grooved inner tube, 70% of the increment of the heat transfer coefficient was obtained compared to the smooth tube. Comparing the heat transfer coefficient between experimental results and simulation data of other's, the Kandlikar's correlated equation was closely approximated to the author's experimental results in the smooth tube or grooved inner one.

  • PDF

Experimental Investigation on the Vapor Explosions with Water/R22 (Water / R22 폭발실험수행을 통한 증기폭발에 관한 연구)

  • Park, I.K.;Park, G.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.257-264
    • /
    • 1994
  • Experimental studies hate been peformed to investigate vapor explosion phenomena which may threaten the containment integrity during severe accidents in nuclear power plants. In this study, experimental equipment is constructed for vapor explosion experiments, and the vapor explosion experiments were conducted using water/R22. During the experiments, water/R22 interaction phenomena were observed using the high speed camera, and the explosion pressure and released mechanical energy were measured with pressure transducer and pressure relief tube. And the effects of some important parameters-hot liquid temperature, hot liquid injection velocity, hot liquid injection velocity, hot liquid injection time, and cold liquid depth-were investigated on the vapor explosion. Also, the experiment with grid was conducted to study reactor -vessel-lower-structure effect on fuel/coolant interaction. Water/R22 explosion conversion ratios were measured between 0.5∼1.6%.

  • PDF

Evaporating Heat Transfer Characteristics of R-290, R-600a Inside Horizontal Double Pipe Heat Exchangers (R-290, R-600a의 수평 이중관형 열교환기내 증발 특성)

  • 홍진우;노건상;권옥배;박기원;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.309-314
    • /
    • 2000
  • Experimental results for heat transfer characteristics of natural refrigerants R-290, R-600a and HCFC refrigerant R-22 during evaporating inside horizontal double pipe heat exchangers are presented. The experimental apparatus is basically a vapour heat pump system, composed of a compressor, a condenser, expansion devices, a evaporator, and some other peripheral devices. The test sections were horizontal double pipe heat exchangers, which were a pair of smoothed tube, having 10.07 mm ID, 12.07 mm OD, and grooved inner fin tube, having 12.70 mm OD, 0.25 mm fin height, and 75 fins. The local evaporating heat transfer coefficients of natural refrigerants were not much affected with the mass velocity than R-22 and it could be interpreted that the local evaporating heat transfer coefficients of R-22 were increased more than those of R-290, R-600a according to the increment of mass velocity. Moreover, the maximum increment of the heat transfer coefficient was found in R-290. The average heat transfer coefficient was obtained the maximum value in R-290 and the minimum value in R-22. It reveals that the natural refrigerant can be used as a substitute for R-22. In the grooved inner fin tube, 70% of the increment of the heat transfer coefficient was obtained compared to the smoothed tube.

  • PDF