• Title/Summary/Keyword: 냉매유동

Search Result 94, Processing Time 0.026 seconds

Study of On-chip Liquid Cooling in Relation to Micro-channel Design (마이크로 채널 디자인에 따른 온 칩 액체 냉각 연구)

  • Won, Yonghyun;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.31-36
    • /
    • 2015
  • The demand for multi-functionality, high density, high performance, and miniaturization of IC devices has caused the technology paradigm shift for electronic packaging. So, thermal management of new packaged chips becomes a bottleneck for the performance of next generation devices. Among various thermal solutions such as heat sink, heat spreader, TIM, thermoelectric cooler, etc. on-chip liquid cooling module was investigated in this study. Micro-channel was fabricated on Si wafer using a deep reactive ion etching, and 3 different micro-channel designs (straight MC, serpentine MC, zigzag MC) were formed to evalute the effectiveness of liquid cooling. At the heating temperature of $200^{\circ}C$ and coolant flow rate of 150ml/min, straight MC showed the high temperature differential of ${\sim}44^{\circ}C$ after liquid cooling. The shape of liquid flowing through micro-channel was observed by fluorescence microscope, and the temperarue differential of liquid cooling module was measuremd by IR microscope.

Heat Transfer Characteristics in the Evaporator of a Soft Ice Cream Maker (소프트 아이스크림 제조기 증발기의 전열 특성)

  • Byun, Ho-Won;Lee, Jin-Wook;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1466-1473
    • /
    • 2012
  • Soft icecream is made by scraping an ice formed on the inside of the cylindrical evaporator, where R-404A is evaporating in the annulus. The heat transfer characteristics of the refrigerant evaporation and those during icecream formation were experimentally investigated. Results show that the refrigerant-side heat transfer coefficients are highly dependent on the location in the evaporator due to the complex annulus configuration. The heat transfer coefficient at the inlet is generally lower than those of other locations. The average heat transfer coefficient increases as heat flux increases or saturation temperature decreases. A correlation is developed to predict the refrigerant-side heat transfer coefficient. The icecream-side heat transfer coefficient oscillates continuously due to the periodic removal of ice formed on the surface. The average heat transfer coefficient during icecream formation is approximately 280 W/$m^2K$, and that during single-phase cooling increased from 150 W/$m^2K$ to 250 W/$m^2K$.

Correlation of Convective Boiling Heat Transfer in a Horizontal Tube for Pure Refrigerants and Refrigerant Mixtures (순수 및 혼합냉매의 유동증발 열전달 상관식)

  • Shin, J.Y.;Kim, M.S.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.254-266
    • /
    • 1996
  • Boiling heat transfer coefficients of pure refrigerants(R22, R32, R125, R134a, R290, and R600a) and refrigerant mixtures(R32/R134a and R290/R600a) are measured experimentally and compared with several correlations. Convective boiling term of Chen's correlation predicts experimental data for pure refrigerants fairly well(root-mean-square error of 12.1% for the quality range over 0.2). An analysis of convective boiling heat transfer of refrigerant mixtures is performed for an annular flow to study degradation of heat transfer. Annular flow is the subject of this analysis because a great portion of the evaporator in refrigeration or air conditioning system is known to be in the annular flow regime. Mass transfer effect due to composition difference between liquid and vapor phases, which is considered as a driving force for mass transfer at interface, is included in this analysis. Correction factor $C_F$ is introduced to the correlation for the pure substances through annular flow analysis to apply the correlation to the mixtures. The flow boiling heat transfer coefficients are calculated using the correlation considering nucleate boilling effect in the low quality region and mass transfer effect for nonzazeotropic refrigerant mixtures.

  • PDF

Intensified Low-Temperature Fischer-Tropsch Synthesis Using Microchannel Reactor Block : A Computational Fluid Dynamics Simulation Study (마이크로채널 반응기를 이용한 강화된 저온 피셔-트롭쉬 합성반응의 전산유체역학적 해석)

  • Kshetrimatum, Krishnadash S.;Na, Jonggeol;Park, Seongho;Jung, Ikhwan;Lee, Yongkyu;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.92-102
    • /
    • 2017
  • Fischer-Tropsch synthesis reaction converts syngas (mixture of CO and H2) to valuable hydrocarbon products. Simulation of low temperature Fischer -Tropsch Synthesis reaction and heat transfer at intensified process condition using catalyst filled single and multichannel microchannel reactor is considered. Single channel model simulation indicated potential for process intensification (higher GHSV of $30000hr^{-1}$ in presence of theoretical Cobalt based super-active catalyst) while still achieving CO conversion greater than ~65% and $C_{5+}$ selectivity greater than ~74%. Conjugate heat transfer simulation with multichannel reactor block models considering three different combinations of reactor configuration and coolant type predicted ${\Delta}T_{max}$ equal to 23 K for cross-flow configuration with wall boiling coolant, 15 K for co-current flow configuration with subcooled coolant, and 13 K for co-current flow configuration with wall boiling coolant. In the range of temperature maintained (498 - 521 K), chain growth probability calculated is desirable for low-temperature Fisher-Tropsch Synthesis.

A Study on the Thermal Flow of Waste Heat Recovery Unit (WHRU) for Ship's Organic Rankine Cycle Power Generation System using CFD Method (CFD를 활용한 선박고온도차발전용 WHRU의 열유동 해석에 관한 연구)

  • Whang, Dae-jung;Park, Sang-kyun;Jee, Jae-hoon;Bang, Eun-shin;Oh, Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.647-655
    • /
    • 2021
  • The IMO (International Maritime Organization) is discussing the improvement of energy ef iciency of ships in order to reduce greenhouse gas emissions from ships. Currently, by applying an ORC power generation system using waste heat generated from ships, high energy conversion efficiency can be expected from ships. This technology uses an organic medium based on Freon or hydrocarbons as the working fluid, which evaporates at a lower temperature range than water. Through this, it is possible to generate steam (gas) and generate power at a low and low temperature relatively. In this study, the analysis of heat flow between the refrigerant and waste heat in the ORC power generation system, which is an organic Rankine cycle, is analyzed using 3D simulation techniques to determine the temperature change, velocity change, pressure change, and mass change of the fluid flowing of the WHRU (Waste Heat Recovery Unit) inside and the outside the structure. The purpose of this study is to analyze how the mass change affects the structure, and this study analyzed the heat transfer of the heat exchanger from the refrigerant and the exhaust gas of the ship's main engine in the ORC power generation system using this technique.

Thermo-Fluid Simulation for Flow Channel Design of 7kW High-Voltage Heater for Electric Vehicles (전기차용 7kW급 고전압 히터 유로 형상 설계를 위한 열유동 시뮬레이션)

  • Son, Kwon Joong
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.191-196
    • /
    • 2022
  • Unlike an international combustion engine car, a battery-powered electric vehicle requires an additional heat source for its heating system. A high-voltage coolant heater has the advantages of high efficiency and a wide operating temperature range. In its development, the geometry design of the coolant flow path is essential. This paper presents the thermal flow simulations of a 7kW high-voltage heater with symmetric serpentine flow channels arranged parallelly. The heater performance was evaluated from the simulation results in terms of the pressure and temperature differences and the flow uniformity. The proposed design showed a greater flow resistance and similar heat exchanging capability than the existing parallel serpentine design. It has the advantage of a relatively wide low-temperature surface area, where the control circuit board susceptible to high temperatures can be located.

A Study on Two-Phase Flow Pattern of Pure Refrigerants R134a and Rl23 and Zeotropic Mixture R134a/R123 in Horizontal Tubular (R134a 및 Rl23과 비공비 혼합냉매 R134a/R123의 수평관내 이상유동양식에 관한 연구)

  • Lim, Tae-Woo;Kim, Jun-Hyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1033-1041
    • /
    • 2003
  • Two-phase flow pattern data during horizontal in-tube flow boiling are presented for pure and mixed refrigerants of R134a and Rl23, The flow pattern is observed through tubular sight glasses located at inlet and outlet of the test section, which is made of a stainless steel tube, 2m long with 10mm I.D., 1.5mm wall thickness. The obtained results are compared with the available various correlations for flow pattern. The flow pattern map of Hashizume was in good agreement with the present data except the region of low mass velocity. Weisman flow pattern map was also known to satisfactorily predict data for refrigerants in the region of annular flow. In this study, the flow pattern are simply classified into two groups; stratified(including intermittent, stratified and stratified-wavy) flow and annular flow. The transition quality from stratified to annular flow was obtained by modifying the liquid Froude number.

Effects of Pulsating Flow on Evaporation of Refrigerant in a Plate Heat Exchanger (판형 열교환기에서 맥동유동이 냉매의 증발에 미치는 영향)

  • Kang Byung-Ha;Jeong Il-Kwon;Kim Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.627-634
    • /
    • 2006
  • Evaporation heat transfer characteristics by pulsating flow in a plate heat exchanger have been investigated experimentally in this study. R-l34a is evaporated by receiving heat from the hot water in the plate heat exchanger. The pulsating frequency in refrigerant side of the plate heat exchanger is varied in the range of 5-25 Hz. The operating pressure of R-l34a and mass flux of hot water are also varied 0.6-0.9 MPa and $45-105 kg/m^2s$, respectively. The experimental results indicate that evaporation heat transfer coefficient of pulsating flow is improved up to 6.3% compared with that of the steady flow at 10 Hz and $G_w=45 kg/m^2s$. It is also found that the evaporation heat transfer enhancement ratio is decreased with an increase in mass flux of hot water, and the evaporation heat transfer enhancement is little influenced by operating pressure of R-l34a.

Prediction of condensation heat transfer coefficients inside horizontal tube in annular flow regime (환상유동 영역에서의 수평관내 응축 열전달계수 예측)

  • Kwak, Kyung-Min;Bae, Chul-Ho;Jung, Mo;Lee, Sang-Chun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.732-742
    • /
    • 1998
  • Prediction method for heat transfer coefficients in a horizontal smooth tube with forced convection condensation is proposed. In this paper, the analogy between momentum and heat transfer was applied to an annular flow regime and the logarithmic velocity distribution is applied to describe the velocity profile within the liquid film. Prediction results are compared with those of experimental ones. The test refrigerants are R113, R22, R134a, R407C(R33/R125/R134a, 23/25/52 wt%), R410A(R32/R125, 50/50 wt%) and R134a+R123(R134a/R123, 85.5/14.5 wt%) which are used under operating conditions in a condenser of air-conditioner. The proposed prediction method shows good agreement with experimental data within$\pm 30%$ for pure refrigerants. For the mixture refrigerants including the ternary mixture refrigerant R407C, condensation heat transfer from this study are higher than those from experiments. By correcting the constant in two-phase frictional multiplier, the predicated heat transfer coefficients become similar to the experimental results.

  • PDF