• Title/Summary/Keyword: 냉각 특성

Search Result 1,692, Processing Time 0.038 seconds

Geological and Geophysical Characteristics of the New Hebrides Basin (뉴헤브리디스 해분의 지질.지구물리학적 특징에 관한 연구)

  • Park, Chung-Hwa
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.559-564
    • /
    • 1997
  • The New Hebrides Basin is an inactive non back-arc basin located at the convergent boundary of the Pacific and Info-Australian plates. This basin was formed from 46 Ma to 60 Ma. The basin has two spreading episodes with rates of 34 mm/a for 42 to 47 Ma and 17 mm/a for 47 to 60 Ma. The sediments covered in the basin has uniform thickness of 0.65 sec. The age-depth correlation curve of the New Hebrides Basin can be represented by the following equation: $Depth(m)=2689+312\sqrt{Age}(Ma)$ The coefficient of 312 in this equation is close to that for major oceans, 350. This suggests that the cooling processes of the lithospheres in the New Hebrides Basin and major oceans are similar to each other. Free-air gravity anomalies of the basin varying from -22.3 mgal to +59.0 mgal. The mean value is +30.2 mgal higher than those of the normal oceans. Moderately large free-air gravity anomalies in the New Hebrides Basin are presumably owing to its location on a marginal swell along the New Hebrides Trench. It is generally observed that the ocean floor is very gently uplifted in a zone about 200 km oceanward of the trench axis. Positive free-air gravity anomalies amounting to $50{\sim}60$ mgal are usually observed on the crest of the swell. This topography is presumably by bending of the oceanic lithosphere so as to dynamically maintain nonisostatic states for some duration.

  • PDF

Seasonal Variability of Thermal Structure and Heat Flux in the Juam Reservoir (주암호의 계절별 수온 구조와 열수지 변화)

  • Sun, Youn-Jong;Cho, Cheol;Kim, Byong-Chun;Huh, In-Aa;Yoon, Jun-Heon;Chang, Nam-Ik;Cha, Sung-Sik;Cho, Yang-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.277-285
    • /
    • 2003
  • Temperature profiles were observed to understand seasonal variation of thermal structures in the Juam reservoir from March 2000 to May 2001. Heat flux which affects thermal structures was calculated by observed water temperature and meteorological data. Temperature became homogeneous vertically by convection due to the surface cooling in winter. Maximum heat loss through the surface (109.45W/$m^2$) occurred in December. There was a horizontal gradient of water temperature in winter. The temperature was $3^{\circ}C$ at upstream and $5^{\circ}C$ near the dam. The surface temperature increased by the increase of solar radiation in spring and summer. Maximum heat gained through the surface was 101.95 W/$m^2$ in July. Maximum surface temperature was $29^{\circ}C$ in August, whereas the bottom water was $7^{\circ}C.$ Surface mixed layer became thicker and its temperature decreased by surface heat loss in fall and winter.

The Rheological Properties and Applications of Modified Starch and Carrageenan Complex as Stabilizer (안정제로서 변성전분과 카라기난 혼합물의 물리적 특성 및 응용)

  • Lee, Jae-Ha;Park, Sung-Jun;Son, Se-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.672-676
    • /
    • 1993
  • Rheological properties of the aqueous solution of various polysaccarides and their effects as a stabilizer in fruit(peach) syrup and yogurt were investigated. Four kinds of modified starch(Sun Kolguard, Sun Registar, Mira Cleer 340 and Maps 449), three types of carrageenan(kappa, iota and lambda types) and pectin were used in this study. The 5% aqueous solution of each modified starch was gelatinized at $66^{\circ}C$. After gelatinization, Sun Kolguard showed the highest viscosity among those samples. The synergistic effect of carrageenan on 5% aqueous solution of Sun Kolguard was studied by changing the mixing ratio, and the result showed that the ratio 90:10(Sun Kolguard:carageenan) had the maximum synergistic effect and the effect of iota type carrageenan was higher than that of other types. The effect of Sun Kolguard as a stabilizer in fruit syrup were superior to other modified starches studied. The gelatinization temperature of the addition of iota carrageenan in starch added fruit syrup changed from $66^{\circ}C$ of 5% aqueous solution to $82^{\circ}C$. Furthermore, the viscosity after cooling of syrup which made iota carrageenan and starch added fruit syrup was more increased than simple starch added fruit syrup. The mixture of 90% Sun Kolguard and 10% iota carrageenan were estimated as the most appropriate stabilizer for manufacturing the fruit syrup and yogurt adding fruit syrup.

  • PDF

Solvent-free UV-curable Acrylic Adhesives for 3D printer build sheet (3D 프린터 빌드시트용 무용제 UV 경화형 아크릴 점착제의 제조)

  • Lee, Bae Hwa;Park, Dong Hyup;Kim, Byung Jick
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.93-100
    • /
    • 2020
  • 3D printing technology enables proper objects to be made through an additive manufacturing method, but resulting in dimension deviation of the product due to contraction phenomenon as cooling melted filament resin injected from high-temperature use environment. In this research, we studied on acrylic adhesives for 3D printer build sheet in order to fabricate high-quality products with a precise shape and to well-mount without distortion. The solvent-free UV-curable acrylic adhesive formulation was designed by adding 4-acryloylmorpholine (ACMO) with high adhesion, toughness, glass transition temperature so that adhesion properties are stable at high temperature and products are easily mounted/detached from the adhesives. The designed formulation was polymerized through two-steps using post-addition of monomers. Using this, the acrylic adhesive was coated to make a film and then analyzed using various experimental techniques. As a result, the fabricated adhesive exhibited high glass transition temperature and there was little gap in peel strength before and after thermal treatment. Moreover, it was confirmed by rheological analysis that this adhesive can provide great bonding/debonding ability without distortion. We demonstrated the fabrication of a rectangular product using a 3D printing method using our acrylic adhesive as a build sheet. Mounting ability and workability were satisfactory and dimension deviation of the product was tiny. Because the product is easily detachable from the acrylic adhesive developed here than conventional build sheets, it is expected that this will provide work convenience to users who use the 3D printer.

과학기술위성 3호 주탑재체 MIRIS 개발 현황

  • Han, Won-Yong;Lee, Dae-Hui;Park, Yeong-Sik;Jeong, Ung-Seop;Lee, Chang-Hui;Mun, Bong-Gon;Park, Seong-Jun;Cha, Sang-Mok;Pyo, Jeong-Hyeon;Ga, Neung-Hyeon;Lee, Deok-Haeng;Park, Jang-Hyeon;Seon, Gwang-Il;Nam, Uk-Won;Yang, Sun-Cheol;Lee, Seung-U;Park, Jong-O;Lee, Hyeong-Mok;Toshio, Matsumoto
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.55.2-55.2
    • /
    • 2010
  • 한국천문연구원은 과학기술위성 3호의 주탑재체인 다목적 적외선영상시스템(Multipurpose Infra-Red Imaging System, MIRIS)을 개발하고 있다. 이 연구개발 사업은 2007년 교육과학기술부의 과학위성 3호 사업 주탑재체 공모를 통하여 10여개의 후보 탑재체 제안서 중에서 최종적으로 채택되었고, 2011년 발사를 목표로, 3년 동안의 연구개발 기간을 거쳐 현재 비행모델 (FM, Flight Model) 개발이 진행 중이다. MIRIS는 한국천문연구원이 개발하여 2003년 발사에 성공한 과학위성 1호 주탑재체인 원자외선 영상분광기 (FIMS, Far ultra-violet IMaging Spectroscope)에 이어 국내에서 자체 개발되는 두 번째 우주망원경이다. MIRIS는 우주공간에서 0.9~2 micron 사이 적외선 영역의 파쉔 알파 방출선 (Paschen Alpha Emiision Line)과 광대역 I, H 파장영역을 관측할 예정이다. 주요 과학임무로는 아직까지 국제 천문학계에서 잘 알려지지 않은 우리은하 내부에 분포한 고온 플라즈마 (Warm Ionized Medium, WIM)의 기원 연구와 아울러 우리은하 성간난류(Interstellar Turbulence)의 특성 및 적외선 우주배경복사의 (Cosmic Infrared Background; CIB) 거대구조 등을 관측연구할 예정이다. 특히 MIRIS는 저온상태 (절대온도 77K, 약 $-200^{\circ}C$)에서 우주공간 관측을 수행할 예정이므로, 국내에서는 연구기반이 취약한 극저온 광학계 및 기계부 설계기술, 극저온 냉각기술 및 열해석 설계기술과 적외선 센서기술 및 자료처리 기술 등 관련기술을 개발하고 있으며 이러한 기반기술을 바탕으로, 아직까지 국내에서 시도된 바 없는 적외선우주망원경 개발을 통하여, 우리나라의 관련 우주기술 분야의 기초원천 기술로서 크게 활용될 것으로 기대하고 있다.

  • PDF

Synthesis and high Temperature properties of Li$_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$spinel prepared by oxalate precipitation (Oxalate 침전법의 의한 Li$_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$spinel의 합성 및 고온특성)

  • 김세호;이병우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.239-244
    • /
    • 2000
  • Synthesis and high temperature phase stability of $_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$(0$\leq$x$\leq$0.2,y=0,1/9,1/6) spinel, both the excess lithium and cobalt added, have been studied. The spinel was prepared by oxalate precipitation method as the wet chemical process. Oxalate derived spinel was synthesized by heating of precipitates at temperature lower than $600^{\circ}C$. As a result of the TG-DTA and XRD analysis of prepared and quenched powders, it was found that reversible phase transitions started at temperatures $T_1$, $T_2$$T_{2'}$. The transitions involved weight (oxygen) loss and gain during heating and cooling. The effects of Li excess and Co doping on the spinel lattice constant, phase stability and transition temperatures of the prepared powders are investigated. This study would provide important data for determining the spinel preparation process such as synthesis temperature and cooling speed.

  • PDF

A Study on the Structural Performance of Post Tensioned Concrete Beam and Slab Subjected to High Temperature (고온을 받은 포스트텐션 콘크리트 보와 슬래브의 구조성능 연구)

  • Choi, Kwang-Ho;Lee, Joong-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.217-223
    • /
    • 2017
  • This research was planned to evaluate the structural performance of post tensioned(PT) concrete member subjected to fire. Prime objective was to suggest some techniques to evaluate the performance of post tensioned concrete beam and slab exposed to high temperature through experiment. To accomplish this objective, the following two scopes have been proceeded to verify the strength reducing ratio of strands and find out the difference of resisting force at the PT concrete members exposed to high temperature through the fire test. The properties of prestressing steel(tendon) in PT concrete beam and slab under variable temperatures were reviewed. The test of this study was shown that stress relaxation occurred at high temperature, and some restoration of tensional force appeared as it got cooling down. The residual tension of the post tensioned beams at 4 hours after reaching the target temperature were 70% at $400^{\circ}C$, 10% at $600^{\circ}C$ and 2% at $800^{\circ}C$. The post tensioned slabs were 94% at $400^{\circ}C$, 84.5% at $600^{\circ}C$ and 62% at $800^{\circ}C$. The reason why the residual tension loss of the post tensioned slab was relatively small was considered to be that the slab was exposed just one side to high temperature and the strength of the strand was restored larger than that of beam. Also, it was confirmed that the post tensioned member inevitably experienced the loss of strength by fire damage, and restoration design of the member should be required to compensate for the value as much as lost strength.

The Structure of Tidal Front in the Earstern Yellow Sea in the Summer of 1982 (1982년 하계 서해안 조석전선의 구조)

  • CHOO Hyo Sang;CHO Kyu Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.83-91
    • /
    • 1984
  • The formation and structure of tidal front in the eastern part of the Yellow Sea were studied based on the oceanographic data compiled during the periods of $1982{\sim}1983$ and $1966{\sim}1970$. Well-defined fronts occurring in the Yellow Sea in summer mark the boundary between the stratified and vertically mixed regimes. The occurrence of vertically mixed regimes may be interpreted in terms of available turbulent kinematic energy of tidal currents. The tidal frontal regions were determined by horizontal gradients of temperature, salinity and dissolved oxygen, and were verified by water colour and transparency. In summer the tidal fronts were found at depths of $15{\sim}25m$ at about 20 miles from the shore. Potential energy of vortical stratification in the tidal frontal region was 10 $Joule/m^3$. The stratification parameter in the frontal region computed from the numerical tidal model was $S_p=1.0.$ Tidal front is formed in regions with $S_p=1-1.5,$ if surface heat flux are constant. Waters in the stratified region have the layer structures of wind-mixed surface layer, thermocline and tidal-mixed bottom layer. In the vertically mixed region, however, sea water is nearly homogeneous. in winter no distinctive tidal front was seen.

  • PDF

Influence of temperature gradient induced by concentrated solar thermal energy on the power generation performance of a thermoelectric module (집중 태양열에 의한 온도구배가 열전발전모듈의 출력 성능에 미치는 영향)

  • Choi, Kyungwho;Ahn, Dahoon;Boo, Joon Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.777-784
    • /
    • 2017
  • Energy harvesting through a thermoelectric module normally makes use of the temperature gradient in the system's operational environment. Therefore, it is difficult to obtain the desired output power when the system is subjected to an environment in which a low temperature gradient is generated across the module, because the power generation efficiency of the thermoelectric device is not optimized. The utilization of solar energy, which is a form of renewable energy abundant in nature, has mostly been limited to photovoltaic solar cells and solar thermal energy generation. However, photovoltaic power generation is capable of utilizing only a narrow wavelength band from the sunlight and, thus, the power generation efficiency might be lowered by light scattering. In the case of solar thermal energy generation, the system usually requires large-scale facilities. In this study, a simple and small size thermoelectric power generation system with a solar concentrator was designed to create a large temperature gradient for enhanced performance. A solar tracking system was used to concentrate the solar thermal energy during the experiments and a liquid circulating chiller was installed to maintain a large temperature gradient in order to avoid heat transfer to the bottom of the thermoelectric module. Then, the setup was tested through a series of experiments and the performance of the system was analyzed for the purpose of evaluating its feasibility and validity.

Study for Characteristic of Frictional Heat Transfer in Rotating Brake System (회전을 고려한 브레이크 디스크의 마찰열전달 연구)

  • Nam, Jiwoo;Ryou, Hong Sun;Cho, Seong Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.817-822
    • /
    • 2017
  • The braking system is one of the most important components in vehicles and machines. It must exert a reliable braking force when they are brought to a halt. Generally, frictional heat is generated by converting kinetic energy into heat energy through friction. As the kinetic energy is converted into heat energy, high temperature heat is generated which affects the mechanical behavior of the braking system. Frictional heat affects the thermal expansion and friction coefficient of the brake system. If the temperature is not controlled, the brake performance will be decreased. Therefore, it is important to predict and control the heat generation of the brake. Various numerical analysis studies have been carried out to predict the frictional heat, but they assumed the existence of boundary conditions in the numerical analysis to simulate the frictional heat, because the simulation of frictional heat is difficult and time consuming. The results were based on the assumption that the frictional heat is different from the actual temperature distribution in a rotating brake system. Therefore, the reliability of the cooling effect or thermal stress using the results of these studies is insufficient. In order to overcome these limitations and establish a simulation procedure to predict the frictional heat, this study directly simulates the frictional heat generation by using a thermal-structure coupling element. In this study, we analyzed the thermo-mechanical behavior of a brake model, in order to investigate the thermal characteristics of brake systems by using the Finite Element method (FEM). This study suggests the necessity to directly simulate the frictional heating and it is hoped that it can provide the necessary information for simulations.