• Title/Summary/Keyword: 냉각 채널

Search Result 185, Processing Time 0.033 seconds

A Study on the Cooling Mechanism in Liquid Rocket Engine of 10tf-Thrust Level using Kerosene as a Fuel (케로신을 연료로 하는 10톤급 액체로켓엔진의 냉각 기구에 관한 연구)

  • Han, Pung-Gyu;Nam-Gung, Hyeok-Jun;Jo, Won-Guk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.66-72
    • /
    • 2003
  • The cooling mechanism for a liquid rocket engine of 10tf-thrust using kerosene as a fuel was studied from the viewpoint of both the regenerative and curtain cooling. Based on the concept of a highly-stratified gas flow in the combustion chamber, the cross section of the combustion chamber was spilt into 2 independent parts, core and exterior part. Additional fuel is injected into the exterior section and gas temperature can be reduced in the exterior section. Consequently, the heat flux into the coolant and wall temperature are reduced and the thermal stability of a liquid rocket en g i.ne could be improved.

Proposed Concept of a Tube-Type Passive Water-Cooled Reactor Without Emergency Core Cooling System (비상노심냉각계통을 제거한 압력관형 피동 수냉각로)

  • Chang, Soon-Heung;Baek, Won-Pil;Lee, Goung-Jin;Lee, Jae-Young
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.161-167
    • /
    • 1994
  • This paper presents a concept of a pressure tube-type water-cooled reactor without the emergency core cooling system. It adopts an innovative fuel channel design using metallic fuel matrix to improve heat transfer from fuel to moderator at loss of coolant cooling. The heat produced in the fuel is cooled by the coolant system during normal operation, but by the passive moderator system at loss of coolant cooling including the loss-of-coolant accident(LOCA). Simple analysis shows that the fuel channel temperature can be maintained within the permissible range for both normal operation and a complete LOCA.

  • PDF

Analysis of Cooldown Capability for the HWR Shutdown Cooling System (중수로 정지냉각계통의 냉각능력 분석)

  • Sin, Jeong-Cheol
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.259-266
    • /
    • 2011
  • Following the reactor shutdown, the reactor shutdown cooling system must be designed to supply the coolant sufficiently not only to remove the decay heat but to maintain the adequate cooling rate to protect the reactor equipments. In this study, KDESCENT code for the light water reactor and SOPHT, SDCS codes for the heavy water reactor were compared and analyzed to investigate the cooling capability during the shutdown cooling process. The shutdown cooling system design requirements were satisfied during cooling process for both the SDCP and the HTP modes and the design cooling rate of $2.8^{\circ}C/min$ or below was maintained using the SDC heat exchangers. This study shows that the shutdown cooling system in the Wolsong 2, 3, 4 reactors provides sufficient cooling to maintain the nuclear fuel integrity by removing the decay heat of the nuclear fission product.

PERFORMANCE EVALUATION OF COOLING CHANNELS IN A PLASTIC INJECTION MOLD MODEL (사출금형의 냉각채널 성능 평가)

  • Kim, H.S.;Han, B.Y.;Lee, I.C.;Kim, Y.M.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.53-57
    • /
    • 2012
  • Design of the cooling channels of a plastic injection mold affects the quality and the productivity of the injection processes. In the injection process, the melted resin with high temperature enters the mold cavity, and just after the cavity is filled the heat should be dissipated through the cooling channels simultaneously. The purpose of this study is to analyse the heat transfer phenomenon and to estimate the temperature distribution in the mold to evaluate the cooling effect of the channels. The injection mold is assumed to have cooling channels of circular cross section and each channel has the same coolant flow rate. and The cavity has a rectangular shape. The results show that as the cooling channels get closer to the cavity surface, the cooling efficiency increases as might easily be guessed. However, due to the final hot resin flow from the gate an intensive cooling is required in that region.

Low Pressure Firing Tests of 75-tonf-Class Channel Cooling Thrust Chamber (75톤급 채널냉각 연소기 저압연소시험)

  • Lim, Byoung-Jik;Han, Yeoung-Min;Kim, Jong-Gyu;Seo, Seong-Hyeon;Ahn, Kyu-Bok;Kim, Mun-Ki;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.71-74
    • /
    • 2010
  • Using the technology demonstration model of 75-tonf-class combustor which is expected to be used to the rocket engine of a korean space launch vehicle, 2 times of firing tests were carried out. Firing tests were done at 50% of the nominal flow rate because of incapability of the test facility and limit of the test bed strength. Through the low pressure firing tests of 75-tonf-class channel cooling thrust chamber, reliability and stability at the ignition and combustion phases were confirmed. Additionally it was foreseen that the 75-tonf-class thrust chamber would satisfy the performance requirements.

  • PDF

Effect of Die Cooling Time on Component Mechanical Properties in a Front Pillar Hot Stamping Process (곡선형 냉각채널 금형을 사용한 프론트 필라 핫스탬핑 공정에서 금형냉각시간이 기계적 특성에 미치는 영향)

  • Lee, Jaejin;Kang, Dakyung;Suh, Changhee;Lim, Yonghee;Lee, Kyunghoon;Han, Soosik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.33-38
    • /
    • 2019
  • Researchers have recently begun to study hot stamping processes to shorten the mold cooling time and improve productivity. These publications explain that the mold cooling time can be reduced by using a curved cooling channel, where the mold surface is processed to a uniform depth, instead of a straight cooling channel that uses the conventional gun drilling machine. This study investigates the characteristics of the front pillar of an automobile after using a mold with a curved cooling channel. To analyze the change in properties, we used a 1.6 mm boron steel blank and heated the prototype at $930^{\circ}C$ for 5 minutes. Next, we formed the prototype with a load of about 500 tons while varying the mold cooling time between 1 and 10 seconds. We subjected each prototype specimen to a tensile strength test, a hardness test, and a tissue surface observation.

Numerical Study on the Cooling Characteristics of a Passive-Type PEMFC Stack (수동공기공급형 고분자 전해질 연료전지 스택에서의 냉각특성에 대한 전산해석 연구)

  • Lee, Jae-Hyuk;Kim, Bo-Sung;Lee, Yong-Taek;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.767-774
    • /
    • 2010
  • In a passive-type PEMFC stack, axial fans operate to supply both oxidant and coolant to cathode side of the stack. It is possible to make a simple system because the passive-type PEMFC stack does not require additional cooling equipment. However, the performance of a cooling system in which water is used as a coolant is better than that of the air-cooling system. To ensure system reliability, it is essential to make cooling system effective by adopting an optimal stack design. In this study, a numerical investigation has been carried out to identify an optimum cooling strategy. Various channel configurations were applied to the test section. The passive-type PEMFC was tested by varying airflow rate distribution at the cathode side and external heat transfer coefficient of the stack. The best cooling performance was achieved when a channel with thick ribs was used, and the overheating at the center of the stack was reduced when a case in which airflow was concentrated at the middle of the stack was used.

A Numerical Analysis on Cooling Performance of Microchannel Waterblock for Electronic Devices Cooling (전자기기 냉각용 마이크로채널 워터블록의 냉각성능에 관한 수치해석)

  • Choi, Mi-Jin;Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho;Lee, Chan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2426-2431
    • /
    • 2007
  • The microchannel waterblock has a good capability in the cooling of electronic devices. The object of this paper is to estiblish the scheme of design for the microchannel waterblock. The effects of flow rate and channel size on the cooling performances are investigated. It was found that the optimum flow rates were ragned from 0.7 lpm to 1.4 lpm. The thermal resistance at 2.0 lpm and 100 W was 0.13 $^{\circ}C$/W. Decrease in the width of channels is more effective for the improvement in the cooling performances of microchannel waterblock than increase in the height of channels. The increase of pressure drop resulted from decrease in the width of channels can be decreased by increasing the hight of channels.

  • PDF

An Experimental Study on Cooling Performance of Microchannel Waterblock for Electronic Devices Cooling (전자기기 냉각용 마이크로채널 워터블록의 냉각성능에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Choi, Mi-Jin;Cha, Dong-An;Yun, Jae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2432-2437
    • /
    • 2007
  • The demand of high speed and miniaturization of electronic devices results in increased power dissipation requirement for thermal management. In this work, the effects of microchannel width, height and liquid flowrate on the cooling performances of microchannel waterblock are investigated experimentally. The microchannel waterblock considered ranged in width from 0.5 to 0.9 mm, with the channel height being nominally 1.7 to 9 times the width in each case. The experiments were conducted using water, over a liquid flow rate ranging from 0.2 to 2.0 lpm. The base temperature, thermal resistance and pressure drop increase with increasing of liquid flow rate. The measured thermal resistances ranged from 0.10 to 0.23 $^{\circ}C$/W for the channel 5.

  • PDF

Heat Transfer Characteristics of Electronic Components in a Horizontal Channel According to Various Cooling Methods (다양한 냉각방법에 따른 수평채널 내 전자부품의 열전달 특성)

  • Son, Young-Seok;Shin, Jee-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.854-861
    • /
    • 2008
  • Heat transfer characteristics of protruding electronic components in a horizontal channel are studied numerically. The system consists of two horizontal channels formed by two covers and one printed circuit board which has three uniform protruding heat source blocks. A two-dimensional numerical model has been developed to predict the conjugate heat transfer. and the finite volume method is used to solve the problem. Five different cooling methods are considered to examine the heat transfer characteristics of electronic components according to the different cooling methods. The velocity and temperature of cooling medium and the temperature of the heat source blocks are obtained. The results of the five different cooling methods are compared to find out the most efficient cooling method in a given geometry and heat sources.