• Title/Summary/Keyword: 냉각 장비

Search Result 173, Processing Time 0.027 seconds

A Study of MTTF improvement of Thermal Device cryogenic-cooler (열상장비 냉각기의 MTTF 개선연구)

  • Jung, Yunsik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.252-257
    • /
    • 2018
  • In this paper, we propose a mean time to failure (MTTF) to improve the solution for a cryogenic cooler, which is an important part of a cooled thermal device. Common electronic devices have a high possibility of failure due to various environmental factors, such as temperature and humidity. But some special devices (such as thermal devices) are designed to overcome environmental factors. The most affected part of a cooled thermal device's MTTF is the cryogenic cooler. The MTTF of a cryogenic cooler is affected by the device's internal heat. Therefore, if the device's internal heat is reduced, the cryogenic cooler's MTTF increases. From the present device's internal heat simulation, we analyze the improvement method of the device. The proposed improvement method's effectiveness is verified by simulation and MTTF calculation.

An Investigation on Influence of Vibration Noise in Cooling Tower on Precision Equipments (산업용 냉각탑의 진동소음이 정밀장비에 미치는 영향에 대한 연구)

  • Lee, Jin-Kab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.369-374
    • /
    • 2016
  • Cooling towers have been installed on rooftops or outside of buildings and widely applied to control the indoor temperature in residential areas and buildings. However, the noise and vibration resulting from their operation may cause problems in adjacent buildings. The purpose of this study is to measure the noise and vibration of an industrial cooling tower located adjacent to industrial plants and to investigate its influence on the surroundings according to an authorized evaluation standard. Further, in order to measure the effect of the vibration of the tower on the precision equipment inside the plant, an experiment is conducted to measure the vibration of the ground in the plant and the targeted precision equipment. The measurement results indicate that the noise in the cooling tower is 4 to 9 dB(A) higher than the maximum level defined in the standard of 68dB(A). The effect of the vibration of the tower on the precision equipment is comparatively minimal, because that in the supporting frame of the building is weaker than that on the floor where the precision equipment is located. The vibration of the floor on.

Reliability Analysis of cooler in Thermal Observation Device (열상감시장비의 냉각기 신뢰도 분석)

  • Hong, Seok-Jin;Jung, Yun-Sik;Kim, Jin-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.432-436
    • /
    • 2016
  • The cooler, which is the main part in a Thermal Observation Device (TOD), makes the TOD function by reducing the temperature. As the cooler is imported, overseas enterprises presented 20,000 hours as the operation time and the military have used the cooler as presented. However, failures have occurred occasionally after mass production stage. Therefore, we need to analyze the MTBF of the TOD cooler. So, military and defense industry companies collected the failure data of the TOD cooler. We analyze the MTBF of the TOD cooler using survival probability function and failure data. We find the optimal distribution by applying parametric method and estimate parameters. We determine that the Log-logistic distribution is the most appropriate for this data. Also, we analyze the reliability per hour of the TOD cooler. The result of MTBF of the TOD cooler was higher than that of presented by oversee enterprises.

Design and Performance Test of Cooling-Air Test Equipment for the Environmental Control System in Aircraft (항공기 ECS 냉각공기 시험장비 설계 및 성능 시험)

  • So, Jae-uk;Kim, Jin-sung;Kim, Jae-woo;Kim, Jin-bok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.147-154
    • /
    • 2021
  • In this paper, the configuration and design of the test equipment are presented to examine the impact of rapid temperature change in cooling-air that may occur during the operation of the fixed wing aircraft Environmental Control System (ECS) on avionic electronic equipment. At the start of the ECS, the temperature of the air supplied by the aircraft ECS may be increased to 5.0℃ per second. In order to ensure operating of the avionic electronic equipment that is mounted on the aircraft and receives cooling-air from the ECS, testing equipment that can implement the cooling-air characteristic test environment is required. During design of test equipment was verified cooling-air rapid rate of temperature change by performing a thermal/flow analysis, performance of the test equipment implemented was verified by applying an avionic electronic equipment.

Study on the cooling control algorithm of electronic devices for an electric vehicle: Part 1 Effectiveness analysis of general control logic (전기자동차용 전자장비 냉각 제어 알고리즘에 관한 연구: Part 1 일반 냉각 제어 로직 유효성 분석)

  • Seo, Jae-Hyeong;Kim, Dae-Wan;Chung, Tae-Young;Jung, Tae-Hee;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1850-1858
    • /
    • 2014
  • The object of this study is to develop an cooling control algorithm for electronics devices of the electric vehicle. In order to estimate the existing cooling control logic of the electronic devices for the small and medium sized electric vehicle, the experiments on the coolant temperature variation of the cooling system were conducted under 4 different seasons conditions. As a result, the existing cooling control logic were overcooled when it was compared with the reference temperature for a required cooling load. In addition, the newly developed optimum cooling control logic for improving the mileages of the tested electric vehicle with consideration of the ambient temperature, vehicle speed, and refrigerant temperature of the air conditioning on/off is necessary.

Performance Characteristics of the Thermal Management System for Passenger Hydrogen Fuel Cell Vehicle (수소연료전지 자동차의 열관리시스템 성능특성에 관한 연구)

  • Lee, Ho-Seong;Won, Jong-Phil;Cho, Chung-Won;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.986-993
    • /
    • 2012
  • The objective of this study is to investigate performance characteristics of the thermal management system for passenger hydrogen fuel cell vehicle under various operating conditions. The thermal management systems comprised of a stack cooling system, an electric device cooling system and an air conditioning system for a passenger room were tested with driving conditions. As a result, in highway driving mode, the cooling performance of the stack cooling system with air conditioning on condition was 28.8 % lower than that of the air conditioning off condition. And cooling load of the electric cooling system in the city driving mode was 65.6% higher than that of the highway driving mode.

A Study on Alternative Fan Selection and Verification in Military Electronic Equipment (방산용 전자장비의 팬 선정 및 검증에 관한 연구)

  • Jin, Sung Eun;Kim, Hwan Gu;Yoon, Eui Youl;Jeon, Hee Ho;Kim, Seung Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1091-1097
    • /
    • 2017
  • Sales of commercial-type cooling fans intended for application in military electronics are often discontinued during equipment production. This results in requirements for alternative fan selection as well as equipment performance and reliability tests, such as high-temperature operation testing. This study deals with alternative fan selection and verification methods that can be used during the production process. First, an alternative fan was selected by calculating the flow and pressure required to effectively cool the equipment, then the feasibility of the selected fan was verified using a reliable CFD heat dissipation analysis model. Following this, a high-temperature operation test was performed using the alternative fan in the equipment. Results demonstrated that the equipment satisfied its required function in a high-temperature environment, and the main parts as well as internal air temperature were found to be thermally stable.

An Experimental Analysis of the Structure-Borne Noise Reduction on Electrical Equipment (전자장비 구조기인소음 저감방안의 실험적 검토)

  • Lee, Seong-Hyun;Seo, Yun-Ho;Kim, Won-Hyoung;Choi, Young-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.111-117
    • /
    • 2014
  • In this paper, the structure-borne noise reduction on electrical equipment is discussed by the experimental analysis. The water cooling system in electrical equipment is the only noise source, so the mock-up was made to measure noise characteristics. Effects of power supply, stiffness, isolation of noise source and natural frequency determined by resilient mounts are investigated using the mock-up. The console prototype was made referring to noise reduction technique by the mock-up. The structure-borne noise level of a console prototype was measured and some experiments to reduce the noise was undertaken. The $1^{st}$ and $4^{th}$ harmonics of operating frequency of cooling fans causes highest structure-borne noise levels. The control of operating speeds of several DC cooling fan groups was tried. Also types and installation layouts of resilient mounts were investigated. To reduce structure-borne noise, followings can be applied: increase of stiffness, isolation of source, decrease of natural frequency of mount, combination of operating speed of fans, selection of mounts, and so on.