• Title/Summary/Keyword: 냉각제

Search Result 409, Processing Time 0.023 seconds

업체탐방 - 원유냉각기 제조에서 유가공기기 설비까지 확장, 제2의 도약을 맞이하고 있는 (주)삼호씨티

  • 한국낙농육우협회
    • 월간낙농육우
    • /
    • v.35 no.11
    • /
    • pp.109-112
    • /
    • 2015
  • 30여 년의 냉각기 제조 기술로 국내 원유냉각기 시장의 40%를 차지하고 있는 (주)삼호씨티(대표 김태삼)가 유가공기기 및 설비 기술로 또 한 번의 전성기에 돌입했다. 이미 포화상태에 있는 국내 원유냉각기 시장을 넘어 일본에 원유냉각기를 수출하고 있는 삼호씨티는 이제 그동안 현장에서 축적해 온 기술력을 바탕으로 유가공 기기까지 순수 국내기술로 제조해 판매함으로써 유럽의 원유냉각기와 경쟁하고 있다.

  • PDF

Application of Computational Fluid Dynamics to Development of Combustion Devices for Liquid-Propellant Rocket Engines (액체추진제 로켓 엔진 연소장치 개발에 있어서의 전산유체역학 응용)

  • Joh, Miok;Kim, Seong-Ku;Han, Sang Hoon;Choi, Hwan Seok
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.150-159
    • /
    • 2014
  • This study provides a brief introduction to application of the computational fluid dynamics to domestic development of combustion devices for liquid-propellant rocket engines. Multi-dimensional flow analysis can provide information on the flow uniformity and pressure loss inside the propellent manifold, from which the design selection can be performed during the conceptual design phase. Multi-disciplinary performance analysis of the thurst chamber can also provide key information on performance-related design issues such as fuel film cooling and thermal barrier coating conditions. Further efforts should be made to develop numerical models to resolve the mixing and combustion characteristics of LOX/kerosene near the injection face plate.

Low Cycle Fatigue Life Prediction of Reusable Experimental Liquid Rocket Engine (재사용이 가능한 실험용 액체로켓엔진의 저주기 피로수명예측)

  • 한풍규;송준영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.8-9
    • /
    • 2002
  • 액체로켓엔진의 연소기는 고온고압의 연소가스에 의해 벽면온도가 매우 높은 수준에 도달하기 때문에, 연소기가 열적으로 안정적으로 작동할 수 있는 메카니즘이 필요하게 되며, 따라서 이러한 방식의 하나로서 추진제를 이용한 재생냉각방식이 널리 사용되고 있다. 일반적으로 재생냉각형 연소기의 내벽은 열전도도가 우수한 구리 또는 구리합금 계열이 많이 사용되고 있다. 이러한 내벽 재질의 내구성은 주로 creep rupture, low cycle thermal fatigue, thermal-mechanical ratcheting에 의해 결정되는데, 사각형태의 냉각채널의 연소기에서는 thermal-mechanical ratcheting 특성이 수명 결정 주요 인자이다. Thermal-mechanical ratcheting은 그림 1과 같이 연소가스 영역과 냉각제 영역을 분리하는 벽면에서 국부적인 부풀음이 일어나면서 벽면두께가 감소하는 소성변형 형태로 나타나는데, 이러한 것을 Dog- house 형상이라 한다.

  • PDF

Development of Combustion Test Facility for Liquid Rocket Engine (액체로켓엔진 성능 및 냉각특성 연구를 위한 연소시험장치 개발)

  • Kim, Dong-Hwan;Lee, Seong-Ung;Yu, Byeong-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.106-111
    • /
    • 2006
  • Combustion test facility for liquid rocket engine using kerosene and liquid oxygen has been developed for the purpose of cooling and performance study. Test engine of thrust under 1.0 KN can be evaluated, and the real combustion test ensures a good operation of the combustion test facility. Combustion test facility will be modified to supply natural gas and liquefied natural gas as fuel and to give a regenerative cooling test.

Preliminary Research of Regenerative Cooling Channel Design for Small Scale Bipropellant Thruster (소형 이원추진제 추력기를 위한 재생냉각 유로형상 설계에 대한 선행연구)

  • Jang, Dong-Wook;Jo, Sung-Kwon;Cho, Hwang-Rae;Bang, Jeong-Seok;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2012
  • Applicability of regenerative cooling in 2,500 N-class bipropellant thruster using hydrogen peroxide and kerosene was considered for improvement of performance and application in various missions. Calculation was performed by one dimensional approach using hydrogen peroxide as a coolant. The heat flux of thruster at nozzle throat was estimated at 18 - 20 MW/$m^2$. Designed cooling channel width and height were 2.5 mm and 0.5 mm, respectively. Based on designed cooling channel configuration, flat plate model was manufactured and tested for estimation of pressure drop in cooling channel, and CFD analysis was compared with the test result. The maximum error between CFD analysis and experimental result was approximately 13% and average error was approximately 5%.

Thermo-fluid Dynamic and Missile-motion Performance Analysis of Gas-Steam Launch System Utilizing Multiphase Flow Model and Dynamic Grid System (다상 유동모델과 동적 격자계를 활용한 가스-스팀 발사체계의 열유동과 탄의 운동성능 해석)

  • Kim, Hyun Muk;Bae, Seong Hun;Park, Cheol Hyeon;Jeon, Hyeok Soo;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.48-59
    • /
    • 2017
  • In this study, an analysis of the thermo-fluid dynamic and missile-motion performance was carried out through a numerical simulation inside the missile canister. Calculation was made in an analytical volume using dynamic grid and evaporated water was used as a coolant. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF (Volume Of Fluid) model were chosen and a parametric study was performed with the change of coolant flow rate. As a result of the analysis, pressure of the canister showed a large difference depending on the presence or absence of the coolant, and also showed a dependancy on the amount of coolant. Velocity and acceleration were dependent on the canister pressure.

제4세대 원자력시스템 소듐냉각 고속로의 설계 특성

  • Lee, Jae-Han
    • Journal of the KSME
    • /
    • v.50 no.3
    • /
    • pp.28-31
    • /
    • 2010
  • 이 글에서는 제4세대(Generation-IV) 원자로시스템의 자원활용 측면에서 핵연료 주기와 관련하여 새롭게 부각되고 있는 소듐냉각고속로(SFR: Sodium-cooled Fast Reactor)의 개발 목적 및 설계 특성을 기술하고 원자로 구조관점에서 가압경수로(PWR)와 비교 설명한다.

  • PDF

Compatibility Assessment of Copper Alloy and Hydrocarbon Fuel for Regeneratively Cooled Combustion Chamber (재생냉각 연소기용 구리합금과 연료 적합성 검증시험)

  • Lim Byoung-Jik;Kim Jong-Gyu;Kang Dong-Hyuk;Kim Hong-Jip;Kim Hui-Tae;Han Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.100-109
    • /
    • 2006
  • In the regeneratively cooled combustion chambers using hydrocarbon fuels, coking occurs as the wall temperature increases which generates compounds deposition on the wall. This phenomenon reduces cooling capability of the coolant, finally it can cause damage to combustor by overheating of chamber wall. In this paper electrical heating equipment which is used for the coking experiments and the test results are introduced. The compatibilities of copper alloy with let A-1 were assessed at each condition based on the test results.

  • PDF

Performance Analysis of the Experimental Liquid Rocket Engine using Liquefied Natural Gas as a Fuel (액화천연가스를 연료로 하는 시험용 액체로켓엔진의 성능해석)

  • 한풍규;이성웅;김경호;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.198-204
    • /
    • 2004
  • Using liquefied natural gas as a fuel, water, natural gas and liquefied natural gas-cooled firing tests were conducted. With the viewpoint of characteristic velocity, and specific impulse, the effect of OF mixture ratio and fuel inlet temperature into a combustion chamber were analyzed. OF mixture ratio and fuel inlet temperature into a combustion chamber have great influence on the performance. Characteristic velocity and theoretical specific impulse attain the maximum value at 0.72~0.75 and 0.75 of OF mixture ratio, respectively. Engine performance has a tendency to increase, proportional to fuel inlet temperature into a combustion chamber affected by the regenerative cooling.

  • PDF

Investigation on Chilling Procedure for LOX Supply System for Liquid Rocket Engine (액체로켓엔진 산화제 공급부 냉각과정 고찰)

  • Cho, Nam-Kyung;Seo, Dae-Bahn;Yoo, Byung-Il;Kim, Seong-Han;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.119-126
    • /
    • 2019
  • For rockets using cryogenic liquid hydrogen or liquid oxygen, chilling is required to avoid cavitation and surge problems. Chilling is categorized by the initial chilling/filling stage and the low-temperature maintenance stage. In addition, to improve satellite insertion capability, a multi-ignition capability is required and accordingly chilling to prepare for the next ignition during low-gravity coasting is also required. This paper describes the overall aspects of filling and low temperature maintain marinating for the booster and the upper stage engine including chilling for multi-ignition.