DOI QR코드

DOI QR Code

Investigation on Chilling Procedure for LOX Supply System for Liquid Rocket Engine

액체로켓엔진 산화제 공급부 냉각과정 고찰

  • Cho, Nam-Kyung (Engine Test & Evaluation Team, Korea Aerospace Research Institute) ;
  • Seo, Dae-Bahn (Engine Test & Evaluation Team, Korea Aerospace Research Institute) ;
  • Yoo, Byung-Il (Engine Test & Evaluation Team, Korea Aerospace Research Institute) ;
  • Kim, Seong-Han (Engine Test & Evaluation Team, Korea Aerospace Research Institute) ;
  • Han, Yeoung-Min (Engine Test & Evaluation Team, Korea Aerospace Research Institute)
  • Received : 2018.08.07
  • Accepted : 2019.05.10
  • Published : 2019.06.01

Abstract

For rockets using cryogenic liquid hydrogen or liquid oxygen, chilling is required to avoid cavitation and surge problems. Chilling is categorized by the initial chilling/filling stage and the low-temperature maintenance stage. In addition, to improve satellite insertion capability, a multi-ignition capability is required and accordingly chilling to prepare for the next ignition during low-gravity coasting is also required. This paper describes the overall aspects of filling and low temperature maintain marinating for the booster and the upper stage engine including chilling for multi-ignition.

극저온 액체산소나 액체수소를 사용하는 액체로켓 엔진은 냉각이 충분하지 않을 경우 펌프 인입부에서 의 케비테이션과 연소기 메니폴드부에서의 급격한 기화에 의한 서지 현상이 발생할 수 있다. 극저온 추진제 사용을 위한 냉각은 유로의 충전을 위한 냉각/충전단계와 충전 후 온도유지 단계로 구분된다. 발사체의 위성투입 능력 향상을 위해서는 상단엔진의 다점화 기능이 필요하며 다점화를 위해서는 무추력 구간 중 다음 시동을 위한 냉각이 수행되어야 한다. 본 연구에서는 지상에서의 엔진의 냉각/충전 및 온도유지, 그리고 상단 엔진이 1차 점화하기 위한 냉각과 무추력 구간에서의 냉각유지, 그리고 다점화를 위한 냉각에 대해 논의한다.

Keywords

References

  1. Deepak, K.A. and Gagan A., "Pressure surge during cryogenic feedling chilldown process," Journal of Thermal Science and Engineering Applications, Vol. 8, No. 1/011005, pp. 1082-1091, 2015.
  2. Dr. Jacob, and N. Chung, "Two Phase Flow Characteristics and Boiling Heat Transfer Rates During Cryogenic Chilldown and Transport in Reduced Gravity", NASA CR-2008-215440/PART3, 2008.
  3. Chung, K. S., Rocket Science 1, 1st ed., Ji-Sung Sa, Seoul, Korea, Ch. 5, 2014.
  4. Delil, A.A.M., "Microgravity two-phase flow and heat transfer," NLR-TP-99429, 1999.
  5. Kitshe, W. Operation of a Cryogenic Rocket Engine, Springer, New York, U.S.A., 1st edition, Ch. 4, 2009.
  6. Agrawal, G., Brennan, J. A., Brentari, E. G., Smith, R. V., Steward, W. G. , "Mathematical Modeling of Cryogenic Feedline Chilldown Process," Proceedings of the 22nd National and 11th International ISHMT-ASME Heat and Mass Transfer Conference, IIT Kharagpur, India, pp.28-31, Dec. 2013.
  7. Brennan, J. A., "Cooldown of Cryogenic Transfer Lines: an Experimental Report," NBS (now NIST) Report 9264, Nov. 1966.
  8. Matteo, F. D., Rosa, M. D., Onofri, M., "Start-up transient simulation of liquid rocket," 47th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, California, U.S.A., AIAA 2011-6032, Jul. 2011.