• Title/Summary/Keyword: 내충격성 폴리스티렌

Search Result 11, Processing Time 0.021 seconds

Effect of Solvent Content on Morphology and Rubber Particle Size Distribution of High Impact Polystyrene (용매 함량이 내충격성 폴리스티렌의 형태구조 및 고무 입도분포에 미치는 영향)

  • 정한균;박정신;장대석;이성재
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.307-315
    • /
    • 2002
  • Major factors affecting the impact resistance of high impact polystyrene (HIPS), the rubber-toughened grade of polystyrene, are rubber-phase particle size and size distribution, molecular weight, morphology, and degree of grafting. Accordingly, it is important to control or investigate these factors. In this study, the effect of solvent content was analyzed by the morphology and particle size distribution of rubber phase, and final properties in bulk-solution polymerization of HIPS. The prepolymerization time was, first, determined by measuring the evolution of particle size distribution of dispersed phase to explain the phase inversion with time. As the solvent content increased, the size of rubber particle increased and then gradually decreased. Rubber-phase morphology was likely to have higher degree of grafting as the solvent content increased. Rheological and mechanical properties decreased as the solvent content increased because of the decrease of matrix molecular weight due to the chain transfer reaction to solvent and the existence of residual solvent. Nevertheless, the impact resistance seemed to increase when the rubber particle size increased.

Interpretation of Morphology and Rubber-Phase Particle Size Distribution of High Impact Polystyrene (내충격성 폴리스티렌의 형태구조 및 고무상 입도분포 해석)

  • 정한균;정대원;안경현;이승종;이성재
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.744-753
    • /
    • 2001
  • One of the most important factors which affect the impact strength of high impact polystyrene (HIPS) is the rubber-phase particle size and size distribution. In this study, HIPS was prepared from a batch reactor to observe the influence of reaction conditions such as rubber content, agitation speed and prepolymerization time on the particle size and size distribution. Measurements concerning the particle size distribution were conducted using a particle size analyzer. Due to swelling, the particle suspended in toluene increases in size with lower heat-treatment temperature and shorter heat-treatment time, while the particle in methyl ethyl ketone shows quite reasonable size without any effort of heat-treatment. As rubber content increases, the average particle size increases substantially, but the increase in agitation speed at lower rubber contents does not have much influence on the size. However, the polystyrene-phase particles occluded in rubber-phase become more uniform as agitation speed increases. Longer prepolymerization time produces rubber-phase particles with narrower particle size distribution.

  • PDF

Synthesis and Characterization of High Impact Polystyrene/Organically Modified Layered Silicate Nanocomposites (내충격성 폴리스티렌과 유기화 층상 실리케이트 나노복합체의 합성 및 특성)

  • 김관영;임효진;박상민;이성재
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.377-384
    • /
    • 2003
  • High impact polystyrene/organically modified layered silicate (HIPS/OLS) nanocomposites by in situ polymerization were synthesized to investigate the effect of clay on the particle size and properties of rubber. In the OLS, the montmorillonite having benzyl group showed best dispersion in polystyrene phase. With the addition of clay, the intercalated peak from XRB was confirmed, but the peak gradually shifted to lower angle as rubber concentration increased. Thus, it is speculated that the organoclay disperses better in rubber phase than in polystyrene phase. The average rubber particle size increased and the particle size distribution widened as the amount of clay increased, which may be caused by the increase of the viscosity ratio of rubber to polystyrene phases and the unstable dispersion. The materials having clay showed improved thermal properties from thermogravimetric analysis. Rheological properties such as complex viscosity and storage modulus increased as the amount of clay increased.

Synthesis and Properties of High Impact Polystyrene Nanocomposites Based upon Organoclay Having Reactive Group (반응성 유기화 점토를 이용한 내충격성 폴리스티렌 나노복합재료의 합성 및 물성)

  • Hwang, Sung-Jung;Chung, Dae-Won;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.347-352
    • /
    • 2008
  • High impact polystyrene (HIPS) nanocomposites with organically modified montmorillonite (organoclay) via in situ polymerization were synthesized, and the effects of organoclay incorporation on material properties were investigated. Organoclays having a reactive group, vinylbenzyltrimethyl clay (VBC) and octadecylvinylbenzyldimethyl clay (ODVC), were prepared by the ion-exchange reactions of sodium montmorillonite with vinylbenzyltrimethyl ammonium chloride (VBTMAC) and octadecylvinylbenzyldimethyl ammonium bromide (ODVBDAB), respectively, and a commercial organoclay, $Cloisite^{(R)}$ 10A(C10A), was used for comparison. It was confirmed that the X-ray diffraction (XRD) peak of the nanocomposites prepared by ODVC disappeared, which indicates the exfoliation of silicate layers. On the contrary, the XRD peak of the nanocomposites prepared by C10A shifted to lower angle, indicative of the intercalation of polymer chains into silicate layers. Rheological properties such as storage modulus and complex viscosity increased with increasing organoclay.

Predictionof Average Drop Size in Turbulently Agitated Oil-in-Oil Dispersions (난류교반되는 오일/오일 분산계의 평균입자경 예측)

  • 이성재
    • The Korean Journal of Rheology
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • 액체와 액체를 교반할 경우 혹은 두가지 이상의 상이 함께 반응하는 화학공정의 경 우에서는 비상용성인 액체들을 난류조건하에 분산시켜 섞이게 한다. 부산계로 구성된 중합 반응기의 경우 분산입자의 크기는 최종제품의 생산성 및 품질에 큰 영향을 미치게 되므로 분산입자의 크기를 예측하는 것은 대단히 중요하다. 이러한 분산계에서 분산입자의 크기는 분산입자가 겪는 유동장에 의해 결정된다. 오일/오일 분산계로 이루어진 고분자 유탁액의 난류교반시 유동장은 종종 점성전단 부영역에 속하게 되는데 이경우의 분산입자의 크기를 예측하는 모델에 대한 연구는 별로 이루어지지않았다. 본연구에서는 오일/오일 분산계의 고 분자 유탁액에 대한 분산입자의 크기를 예측하는 모델식을 유체동력학적인 이론을 배경으로 하여 개발하였다. 개발한 모델식을 난류교반을 겪은 오일/오일 분산계를 거쳐 생산된 제품 인 내충격성 폴리스티렌으로 검증하여 모델식의 타당성을 입증하였다.

  • PDF

Mechanical Properties of in Recyclate HIPS with Concentration of Fly Ash (再生 HIPS에 石炭灰 첨가에 따른 기계적 특성)

  • 안태광;김덕현
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.34-40
    • /
    • 2001
  • Post-consumer dairy HIPS bottles were gathered and recycled by the following processes; crushing into flakes, chemical treatment for the purpose of elimination aluminium caps, washing, and separation from other plastics, such as PP, PE, plasticized PVC These HIPS flakes were extruded into the chips using a single screw extruder. Recyclate HIPS chips were mixed with fly ash as an additive in the range of 5-50 wt%, which were formed from coal power plant. Recyclate HIPS chips mixed with fly ash were molded to investigate thermal and mechanical properties. Their samples, thermal and mechanical properties were measured via DSC, TGA, UTM, and impact strength analysis. The probable mechanical properties exhibited the range of 5∼30% fly ash contents for their applications.

  • PDF

Average Particle Size Prediction of Rubber Dispersed Phase in High Impact Polystyrene (내충격성 폴리스티렌의 고무상 입자경 예측)

  • Lee, Seong-Jae;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.31 no.5
    • /
    • pp.327-334
    • /
    • 1996
  • A correlative analysis has been carried out to predict the average particle size of rubber dispersed phase In high impact polystyrene manufactured by bulk polymerization. To do the correlation, a mechanistic model suggested previously by the author was used for describing the size of stabilizing particles agitated under the turbulent viscous shear subranges in a prepolymerization reactor, where the rubber particles were assumed to be formed at the time of phase inversion in the reactor. Viscosities required for the model were postulated to describe the overall behavior of butadiene rubber and polystyrene mixture along the wide range of conversion. The good agreement between the model and the experimental data from a plant was quite satisfactory for the prediction of the average rubber particle size of high impact polystyrene.

  • PDF

Optical and Mechanical Properties of Styrene/Butyl Acrylate/Methyl Methacrylate Terpolymers (스티렌/부틸아크릴레이트/메틸메타아크릴레이트 삼원 공중합체의 투명성 및 기계적 물성)

  • Jang, Sang Jin;Park, Hae Youn;Seo, Kwan Ho
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.191-199
    • /
    • 2015
  • In order to improve the low impact resistance of polystyrene without harming its transparency the styrene monomer was copolymerized with transparent butyl acrylate (BA), and methylmethacrylate (MMA) to obtained a poly(styrene-co-butylacrylate) P(SM-co-BA) and a terpolymer copolymer P(SM-co-BA-co-MMA). The polymers were then cross-linked with the aid of a cross-linking agent dicumylperoxide (DCP), and their mechanical and optical properties were tested. It was found that the contents of monomers and DCP affect the mechanical, thermal, and optical properties of the polymers. An increase in BA contents in P(SM-co-BA) and P(SM-BA-MMA) improved the mechanical strength, but the optical properties remained the same with some exception for P(SM-co-BA). An increase in the DCP contents improved the mechanical but found losses in the optical properties.

A Study on the Compatibilization of Blends Based on Poly(phenylene ether) and Polyamide (Poly(phenylene ether)/Polyamide 블렌드의 상용화에 관한 연구)

  • 김형수;임종철
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.441-449
    • /
    • 2001
  • Compatibilization of blends based on poly(phenylene ether) (PPE) and polyamide (PA) has been practiced with the incorporation of a copolymer formed by grafting polystyrene onto polybutadiene latex (g-BS) which is further functionalized with maleic anhydride (MAH) (g-BS*) to impart reactivity with amine groups of PA. The major focus has been placed on the effect of the various structural factors in g-BS8 on the phase morphology and mechanical performance of the blends. For the balance of impact strength and heat resistance, it was important to locate g-BS n particles inside of the PPE phase, which was accomplished by the proper control of the molecular weight and amount of PS in g-BS*. For g-BS*'s having constant molecular weight and amount of PS, the reduction of MAH content or increase of rubber particle size in g-BS* resulted in the increase of domain size and consequently loss in mechanical properties. Based on the comparison made with the conventional PPE/PA blend comprising MAH grafted PPE as a compatibilizer, it was confirmed that the comparable level of mechanical performance can be achieved by an appropriate g-BS* type material with improved whiteness index.

  • PDF