Browse > Article

Synthesis and Properties of High Impact Polystyrene Nanocomposites Based upon Organoclay Having Reactive Group  

Hwang, Sung-Jung (Department of Polymer Engineering, The University of Suwon)
Chung, Dae-Won (Department of Polymer Engineering, The University of Suwon)
Lee, Seong-Jae (Department of Polymer Engineering, The University of Suwon)
Publication Information
Polymer(Korea) / v.32, no.4, 2008 , pp. 347-352 More about this Journal
Abstract
High impact polystyrene (HIPS) nanocomposites with organically modified montmorillonite (organoclay) via in situ polymerization were synthesized, and the effects of organoclay incorporation on material properties were investigated. Organoclays having a reactive group, vinylbenzyltrimethyl clay (VBC) and octadecylvinylbenzyldimethyl clay (ODVC), were prepared by the ion-exchange reactions of sodium montmorillonite with vinylbenzyltrimethyl ammonium chloride (VBTMAC) and octadecylvinylbenzyldimethyl ammonium bromide (ODVBDAB), respectively, and a commercial organoclay, $Cloisite^{(R)}$ 10A(C10A), was used for comparison. It was confirmed that the X-ray diffraction (XRD) peak of the nanocomposites prepared by ODVC disappeared, which indicates the exfoliation of silicate layers. On the contrary, the XRD peak of the nanocomposites prepared by C10A shifted to lower angle, indicative of the intercalation of polymer chains into silicate layers. Rheological properties such as storage modulus and complex viscosity increased with increasing organoclay.
Keywords
high impact polystyrene; nanocomposites; organoclay; montmorillonite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 S. Qutubuddin and X. Fu, Nano-Surface Chemistry, Marcel Dekker, New York, 2002
2 E. P. Giannelis, Adv. Mater., 8, 29 (1996)   DOI
3 L. Biasci, M. Aglietto, G. Ruggeri, and F. Giardelli, Polymer, 35, 3296 (1994)   DOI   ScienceOn
4 V. V. Ginzburg and A. C. Balazs, Macromolecules, 32, 5681 (1999)   DOI   ScienceOn
5 T. Lan, P. D. Kaviratana, and T. J. Pinnavaia, Chem. Mater., 7, 2114 (1995)
6 M. Kato, A. Usuki, and A. Okada, J. Appl. Polym. Sci., 63, 1781 (1997)
7 A. Akelah, A. Rehab, T. Agag, and M. Betiha, J. Appl. Polym. Sci., 103, 3797 (2007)
8 P. Uthirakumar, Y. B. Hahn, K. S. Nahm, and Y. S. Lee, Eur. Polym. J., 41, 1582 (2005)   DOI   ScienceOn
9 R. A. Vaia, H. Ishii, and E. P. Giannelis, Chem. Mater., 5, 1694 (1993)   DOI   ScienceOn
10 A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1174 (1993)   DOI   ScienceOn
11 K. Y. Kim, H. J. Lim, S. M. Park, and S. J. Lee, Polymer (Korea), 27, 377 (2003)
12 C. I. Park, W. M. Choi, M. K. Kim, and O. O. Park, J. Polym. Sci., Polym. Phys., 42, 1685 (2004)   DOI   ScienceOn
13 A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, and T. Kurauchi, J. Mater. Res., 8, 1179 (1993)   DOI   ScienceOn
14 A. Akelah and A. Moet, J. Mater. Sci., 31, 3589 (1996)   DOI
15 M. S. Wang and T. J. Pinnavaia, Chem. Mater., 6, 468 (1994)   DOI   ScienceOn
16 M. S. Wang and T. J. Pinnavaia, Chem. Mater., 6, 468 (1994)   DOI   ScienceOn
17 Z. Wang and T. J. Pinnavaia, J. Chem. Mater., 10, 3769 (1998)   DOI   ScienceOn
18 T. K. Chen, Y. I. Tien, and K. H. Wei, Polymer, 41, 1345 (2000)   DOI   ScienceOn
19 Y. C. Ke, C. F. Long, and Z. N. Qi, J. Appl. Polym. Sci., 71, 1339 (1999)
20 Y. K. Kim, K. H. Ahn, and S. J. Lee, Ceramist, 9, 33 (2006)
21 X. Fu and S. Qutubuddin, Polymer, 42, 807 (2001)   DOI   ScienceOn
22 T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, Chem. Solids, 57, 1005 (1996)   DOI   ScienceOn
23 P. B. Messersmith and E. P. Giannelis, J. Polym. Sci., Polym. Chem., 33, 1047 (1995)   DOI   ScienceOn
24 G. Christidis and P. W. Scott, Industrial Minerals, 311, 51 (1993)