• Title/Summary/Keyword: 내진 성능 개선

Search Result 149, Processing Time 0.022 seconds

Study on Establishing Earthquake-resistance Reinforcement Measures for Earthquake Disasters in National Industrial Complexes (국가산업단지의 지진재난 내진보강대책 수립 연구)

  • Chang Young Song
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.882-896
    • /
    • 2023
  • Pupose: The purpose is to prepare safety management and seismic reinforcement measures that can effectively improve the potential risks of earthquake-resistant design and the deficiencies of safety guidance and inspection of factory facilities in national industrial complexes. Method: In this study, problems and improvement measures were derived through investigation and analysis of overall earthquake disaster safety management, such as safety management status and management system in preparation for earthquake disasters in national industrial complexes. was implemented to suggest improvement plans based on facility types and structural characteristics. Result: In conclusion, the problems of safety management and seismic reinforcement in preparation for earthquake disasters in national industrial complexes were summarized and classified into four types (seismic performance evaluation and related system supplementation, authority of tenant companies and local governments, seismic reinforcement and safety management support measures, organizational structure capacity building) to derive improvement measures. Conclusion: Based on this, seismic reinforcement measures that companies in national industrial complexes should implement in preparation for earthquake disasters were prepared, and detailed plans for each measure were presented.

Development of Performance-Based Seismic Design of RC Column Retrofitted By FRP Jacket using Direct Displacement-Based Design (직접변위기반설계법에 의한 철근콘크리트 기둥의 FRP 피복보강 내진성능설계법의 개발)

  • Cho, Chang-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.105-113
    • /
    • 2007
  • In the current research, an algorithm of performance-based seismic retrofit design of reinforced concrete columns using FRP jacket has been proposed. For exact prediction of the nonlinear flexural analysis or FRP composite RC members, multiaxial constitutive laws of concrete and composite materials have been presented. For seismic retrofit design, an algorithm of direct displacement-based design method (DDM) proposed by Chopra and Goel (2001) has been newly applied to determine the design thickness of FRP jacket in seismic retrofit of reinforced concrete columns. To compare with the displacement coefficient method (DCM), the DDM gives an accurate prediction of the target displacement in highly nonlinear region, since the DCM uses the elastic stiffness before reaching the yield load as the effective stiffness but the DDM uses the secant stiffness.

Seismic Performance of Composite Beam-to-Column Joints Using Wedges (쐐기의 원리를 이용한 합성 보-기둥 접합부의 내진성능에 관한 연구)

  • Park, Jong-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.63-68
    • /
    • 2007
  • The purpose of this study was to develop a new connection method between steel beams and PC columns known as SL connectors. Composite moment frames consisting of PC columns (or composite columns) and steel beams make the best use of advantages of both concrete and steel materials. However, the connection between two members of different materials can be complex and/or increase the fabrication costs significantly. The concept of SL connectors is based on using wedges and the emphasis is on a self-locking (SL) feature. SL connectors are easy to install and provide better seismic performance compared to conventional connections. To evaluate the seismic performance of the steel beam-to-PC column joints with SL connectors, cyclic load tests were conducted. Test result showed that steel beam-to-concrete column joint with SL connectors was able to provide sufficient performance for use in seismic resistant moment frames.

A Study on the Dynamic Response of RC "L" Joint Under the Simulated Seismic Load (모의 지진하중을 받는 RC "L" joint의 동적거동에 관한 연구)

  • 박승범;청궁리
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.3
    • /
    • pp.100-107
    • /
    • 1982
  • 최근 철근 콘크리트 구조물의 지진하중 및 이와 유사한 진동하중에 대한 내진안전성 문제가 대두되어 이에 관한 모형공식체의 진동실험 및 실존구조물의 동적구조특성의 해석 등에 의한 내진성 향상을 위한 보강방법이 강구되고 있다. 본 연구에서는 진동하중에 파괴되기 쉬룬 철근 콘크리트 보와 기둥이 상호 교차되는 죠인트 구역의 동적파괴거동을 확인하기 위하여 "L"형 철근 콘크리트 죠인트와 부재를 제작, 모의지진하중 조건하에서의 동적 응답특성을 구명하고자 반복하중에 따른 joint구역과 보 및 기둥의 동적파괴거동을 고찰하였다. 특히 내진구조물 설계에 주요 요소인 연성(m)이 0.5, 1.0, 3.0일 때 각각 3회씩 그리고 m=5.0일 때 부재가 완전히 파괴될 때까지 4회 반복하여 반복하중을 작용시키면서 이때의 부재의 극한강도 및 그 변형성능을 LVDT System을 사용하여 조사분석하였으며, 파괴성상은 물론 배근효과에 대하여도 이를 구명하고자 노력하였다. 본 연구 결과 무엇보다도 부재의 강성과 내력의 향상 및 신축만곡, 전단변형 등의 변형성능의 개선 그리고 보의 휨파괴에 대한 보강 및 joint구역의 전단보강은 내진구조물 설계를 위하여 중요 사항임을 확인하였다.

  • PDF

A Study on Improvement Plans of Earthquake Disaster Safety Management in National Industrial Complexes (국가산업단지 지진재난 안전관리 개선방안 연구)

  • Song, Chang Young;Lee, Dae Jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.3
    • /
    • pp.1-14
    • /
    • 2020
  • The purpose of this study is to identify the problems of the earthquake disaster safety management in the national industrial complexes and to suggest improvement counter-measure. Literature review for the safety management system of the Korea Industrial Complex Corporation and interview with practitioners was conducted. and Seismic design application survey was conducted on 28 national industrial complexes. In order to improve Earthquake Disaster Safety Management, Counter-measures were suggested such as the reinforcement of laws and regulations related Seismic. It is expected that the improvement counter-measures presented in this study can be used as policy-making data for improving the seismic performance of the national industrial complexes in the future.

Development of a Precast Concrete Structural Wall Adopting Improved Connections in the Plastic Hinge Region (소성힌지 영역의 접합부를 개선한 PC 구조벽체의 개발)

  • Kang, Su-Min;Oh, Jae-Keun;Kim, Ook-Jong;Lee, Do-Bum;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.15-26
    • /
    • 2010
  • The purpose of this study is to develop a precast concrete structural wall system that can assure reliable seismic performance. In previous studies, the connections of precast concrete structural walls have had some problems in their seismic performance. Therefore, this research proposes precast concrete structural walls which have an improved seismic performance. One is a hybrid precast concrete structural wall that is composed of a reinforced concrete component and a precast concrete component, and another is a precast concrete wall whose reinforcements have a partially reduced section and are partially unbonded from the surrounding concrete. To evaluate the seismic performance of the proposed precast concrete structural walls, the behavior of three specimens, including a reinforced concrete wall, were subjected to reversed cyclic combined flexure and shear. According to the test results, the proposed precast concrete structural walls have reliable seismic performance.

Improved Distribution of Seismic Forces for Evaluation of Nonlinear Seismic Response of Building Structures (건축구조물의 비선형 지진응답 평가를 위한 개선된 지진하중 분배방법)

  • 이동근;최원호;안지희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.33-47
    • /
    • 2001
  • 성능에 기초한 내진설계에서는 구조물이 보유하고 있는 능력을 효과적으로 파악하기 위해서 비선형 정적 해석이 적용되고 있다. 그러나 비선형 정적해석은 고차모드에 대한 효과를 고려하지 못함으로써 고층구조물이나 비정형 구조물과 같은 경우에는 정확한 비선형 지진응답의 산정과 내진성능을 평가하는데 문제점을 가지고 있다. 본 연구에서는 건축구조물의 선형 및 비선형 지진응답 평가를 위하여 응답 스펙트럼해석을 통하여 얻어지는 층전단력으로부터 층하중을 산정하는 유사동적해석법이 적용되었다. 제안된 방법을 비선형 정적 해석에 적용하여 구조물의 비선형 자동응답을 비선형 시간이력해석의 결과와 비교하였다. 기존의 층분포하중에 의한 비선형 지진응답과 비교하였으며, 제안된 방법에 의한 지진 응답이 구조물의 비선형 거동특성을 가장 정확하게 표현하였다. 그러므로 본 연구에서 제안된 방법을 사용하여 비선형 정적 해석을 수행한다면 비교적 명확한 건축물의 비선형 거동특성과 내진성능을 평가할 수 있을 것으로 판단된다.

  • PDF

Seismic Characteristics of Hollow Rectangular Sectional Piers with Reduced Lateral Reinforcements (횡방향철근이 감소된 중공사각단면 교각의 내진거동 특성)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.51-65
    • /
    • 2009
  • The seismic design concept of RC bridges is to attain the proper ductility of piers, yielding a ductile failure mechanism. Therefore, seismic design force for moment is determined by introducing a response modification factor (R), and lateral reinforcements to confine core concrete are specified in the current design code. However, these design provisions have irrationality, which results in excessive amounts of lateral reinforcements for columns in Korea, which are generally designed with large sections. To improve on these provisions, a new design method based on seismic performance has been proposed. To apply this to hollow sectional columns, however, further investigations and improvements must be performed, due to the different seismic behaviors and confinement effects. In this study, hollow sectional columns with different lap-splice of longitudinal bars and lateral reinforcements have been tested. Seismic characteristics and performance were investigated quantitatively. These research results can be used to derive a performance-based design for hollow sectional columns.

Seismic Performance Evaluation of Building Structures Based on the Adaptive Lateral Load Distribution (적응적 횡하중 분배방법을 이용한 건축구조물의 내진성능평가)

  • 이동근;최원호;정명채
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.39-58
    • /
    • 2004
  • It is very important that predict the inelastic seismic behavior exactly for seismic performance evaluation of a building in the performance based seismic design. Evaluation method of seismic performance based on the pushover analysis reflected in PBSE was developed by some researchers. For the evaluation of inelastic global and local seismic responses by pushover analysis exactly. lateral load distribution should be adjusted and reflected the dynamic characteristics of structural system and various seismic ground motions. And performance point should be determined based on the evaluation of reasonable deformation capacity of a building more exactly. An effective method based on the improved the adaptive lateral load distribution and the equivalent responses of a multistory building is proposed in this study to efficiently estimate the accurate inelastic seismic responses. The proposed method can be used to evaluate the seismic performance for the global inelastic behavior of a building and to accurately estimate its local inelastic seismic responses. In order to demonstrate the accuracy and validity of this method, inelastic seismic responses estimated by the proposed method are compared with those obtained from other analytical methods.

Improvement in Design Load and Seismic Performance Objective for Industrial and Environmental Facilities (산업환경시설의 설계하중과 내진성능목표 개선안)

  • Kim, Ickhyun;Hong, Kee-Jeung;Kim, Jung Han;Lee, Jin Ho;Cho, Sunggook;Lee, Jin-Hyeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.763-773
    • /
    • 2022
  • Industrial and environmental facilities, which are national growth engine, must sustain their structural safety and maintain their process to continue production activities under various load conditions including natural hazards. In this study, by improving existing design codes which aim to secure the structural safety only, new structural and seismic design codes are proposed to secure both the structural safety and the operability of facilities. In the proposed structural design code, a variety of loads to reflect the characteristics of industrial and environmental facilities are considered and load combinations for the ultimate strength design and the allowable stress design of structures are suggested. Considering the importance of a unit industrial facility and that of a unit process, the seismic design class, design earthquake, and seismic performance level of a unit component are determined to achieve the dual seismic performance objectives for securing both the structural safety and the operability. Also, the proposed design code are applied to an example of an environmental facility in order to examine its applicability.