• Title/Summary/Keyword: 내진영향인자

Search Result 25, Processing Time 0.031 seconds

A Seismatic Performance Analysis of Circular RC Bridge Piers I. Evaluation of Influence Parameters of Confinement Steel Ratio (원형 철근콘크리트 교각의 내진성능 I. 심부구속철근비 영향 변수 평가)

  • Lee Dae-Hyoung;Park Chang-Kyu;Kim Hyun-Jun;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.603-611
    • /
    • 2005
  • For the establishment of rational seismic design code for RC (reinforced concrete) bridge pier, this paper has analyzed the seismic code of RC bridge pier specified in )veil-known codes such as KHBDS (Korea Highway Bridge Design Specification), AASHTO Standard, ATC-32, Eurocode 8, NZS 3101, etc. So as to secure aseismic ductility of RC pier, transverse confinement steel ratios of those codes have been examined together with other design parameters such as strength of concrete and reinforcing steel, axial force ratio, aspect ratio, longitudinal steel ratio, etc. However, there has been arisen a doubt for the validity of those parameters. Thus, the objective of this study is to quantitatively evaluate the validity of design parameter of each code on the experimental seismic ductility for about 80 test specimens. It was concluded from this study that the axial force ratio is a dominant factor for the seismic displacement ductility. Therefore, it Is desirable that the axial force ratio be further taken into account in the corresponding seismic design formula of RC bridge pier in current KHBDS.

Aseismic analysis for large underground structure (대형 지하구조물의 내진해석)

  • Choi, Seung-Ho;Pam, Inn-Joon;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.163-174
    • /
    • 2009
  • The large underground structure under earthquake is affected more by soil dynamic characteristic and volume of structure than by structural dynamic characteristic itself. Therefore, it is the purpose of research that the aseismic analysis for caverns including various aseismic analysis factors (rock quality-Q value, soil dynamic characteristic, shape ratio $&$ volume, underground structural dynamic characteristic, and aseismic level) are applied by using the numerical analysis program (SAUS; seismic analysis of underground structures). The result of research is stated that maximum strain, maximum moment, and maximum shear are not sensitive with respect to shape ratio. However those values are sensitive with respect to Q value, volume of underground structure and aseismic level. Based on the results of this research, the assessment for the influence factors of aseismic analysis for large underground structure could be possible.

Weighting-Factored Evaluation Method for Determination of Seismic Retrofitting Schemes for Existing Bridges (기존 도로교의 내진성능향상 방법 선정을 위한 가중치 평가기법)

  • Ha, Dong-Ho;Lee, Ji-Hoon;Park, Kwang-Soon;Lee, Yong-Jae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.43-52
    • /
    • 2007
  • This study suggests a method to determine optimal seismic retrofitting schemes for existing bridges based on weighting-factored evaluation. According to the recognition for potential seismic risk, various kinds of retrofitting methods are applied to improve the seismic performance of existing bridges. However, the relevant technique is not available to select optimal retrofitting scheme for bridges now. This suggested method weights five factors, structural compatibility, economic efficacy, environmental factor, consturctability and maintenance, and draws out optimal seismic retrofitting schemes. The application of the developed method to one hundred sixty existing bridges verifies the adaptability of this method. As a result, this study provides an idealized retrofitting schemes, and the suggested method could be a guideline to determine the more cost-effective and optimal retrofitting schemes for existing bridges in Korea.

Development of an Earthquake-Resistant Model for a High-Level Waste Disposal Canister (고준위 폐기물 처분용기 내진 해석 모델 개발)

  • Choi, Young-Chul;Yoon, Chan-Hoon;Kim, Hyun-Ah;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.316-324
    • /
    • 2014
  • In the underground 500 m depth, the high level radioactive waste disposal system is made by boring the tunnel in the base rock and putting the high level waste disposal canister that is the surrounding form with the buffer material. According to the many statistics, it is the tendency that the earthquake increases in the Korean peninsula every year. In case that the earthquake is generated, the disposal canister in the rock mass can be broken due to the shearing force in the underground. Furthermore, a major environmental problems can be caused by the radioactive harmful substances. In this study, the earthquake-proof type buffer material was developed with the protection method safely on the earthquake. The main parameter having an effect on the earthquake-resistant performance was analyzed and the earthquake-proof type buffer material was designed. The shear analysis model was developed and the performance of the earthquake-proof type buffer material was evaluated by using ABAQUS.

Study on the effective parameters and a prediction model of the shield TBM performance (쉴드 TBM 굴진 주요 영향인자분석 및 굴진율 예측모델 제시)

  • Jo, Seon-Ah;Kim, Kyoung-Yul;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.347-362
    • /
    • 2019
  • Underground excavation using TBM machines has been increasing to reduce complaints caused by noise, vibration, and traffic congestion resulted from the urban underground construction in Korea. However, TBM excavation design and construction still need improvement because those are based on standards of the technologically advanced countries (e.g., Japan, Germany) that do not consider geological environment in Korea at all. Above all, although TBM performance is a main factor determining the TBM machine type, duration and cost of the construction, it is estimated by only using UCS (uniaxial compressive strength) as the ground parameters and it often does not match the actual field conditions. This study was carried out as part of efforts to predict penetration rate suitable for Korean ground conditions. The effective parameters were defined through the correlation analysis between the penetration rate and the geotechnical parameters or TBM performance parameters. The effective parameters were then used as variables of the multiple regression analysis to derive a regression model for predicting TBM penetration rate. As a result, the regression model was estimated by UCS and joint spacing and showed a good agreement with field penetration rate measured during TBM excavation. However, when this model was applied to another site in Korea, the prediction accuracy was slightly reduced. Therefore, in order to overcome the limitation of the regression model, further studies are required to obtain a generalized prediction model which is not restricted by the field conditions.

A theoretical study on the factors for the seismic performance of RC T-shaped walls (철근콘크리트 T형 벽체의 내진성능 영향인자에 관한 해석적 연구)

  • 하상수;최창식;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.521-526
    • /
    • 2002
  • The seismic performance of structural walls subjected to the cyclic lateral loads are influenced by various factors, like sectional shape, aspect ratio, reinforcement ratio, arrangement of reinforcement, and axial load ratio etc. In this research, reinforced concrete structural walls with the T-shaped cross section were selected. The seismic performance of T-shaped wall was affected by the many (actors because T-shaped wall is irregular wall composed to two rectangular walls. Especially the seismic performance of T-shaped wall varies with the flange condition and the various factors including the flange condition were determined. Therefore, the objective of this study is to understand the factors to improve seismic performance of RC T-shaded tv using sectional analysis.

  • PDF

Aseismatic Performance Analysis of Circular RC Bridge Piers II. Suggestion for Transverse Steel Ratio (원형 철근콘크리트 교각의 내진성능 II. 심부구속철근비 제안)

  • Park Chang-Kyu;Lee Dae-Hyoung;Lee Beom-Gi;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.775-784
    • /
    • 2005
  • In this research, major design factors have been evaluated for the establishment of the rational seismic design code of circular RC(reinforced concrete) bridge pier Previous experimental researches have drawn a conclusion that transverse confinement reinforcements have been excessively used for RC bridge piers in Korea. Thus, the objective of this study is to propose a rational design equation for transverse reinforcements of RC bridge piers in Korea which would be classified as a low or moderate seismic region. Newly proposed equation further considers the effect of the axial force ratio and the longitudinal steel ratio. Minimum transverse confinement steel ratio is also proposed to avoid probable buckling of the longitudinal reinforcing steels subjected to relatively low axial force. It is thought that these new codes seem to alleviate the rebar congestion in the plastic hinge region of RC bridge piers which contribute to the enhancement of constructibility and economization for RC bridge construction.

The Earthquake Response Characteristics and Seismic Safety Evaluation of Steel Cable Stayed Bridges (강사장교의 지진응답특성 및 내진 안전성 평가)

  • Han, Sung Ho;Shin, Jae Chul;Choi, Jin Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.435-454
    • /
    • 2007
  • In this study, we demonstrated the characteristics of the near-fault ground motion thatwas not considered in the domestic seismic design code and how the effect of the near-fault ground motion affects the response of cable-stayed bridges. Afterselecting the actual measurement records of the typical near- and far-fault ground motion, the characteristics of ground motion is analyzed using the elastic and inelastic response spectrum. Analyzing the response regarding the earthquake's characteristics on cable-stayed bridges by the typical three-type cable-stayed bridges and the actual cable-stayed bridge, the characteristics of responses about main members are compared and analyzed. Moreover,reliability analysis is accomplished using the results of the seismic response analysis, and the seismic safety of the cable-stayed bridges is evaluated quantitatively as a reliability index and probability of failure. According to the results of the response spectrum, the earthquake response analysis and the reliability analysis, because the effect of the near fault ground motion against the response of cable-stayed bridges is different from the effect of the existing far-fault ground motion, it should be considered as an important factor when designing cable-stayed bridges.

A Study on the Safety Ratio of Reservoir Embankment by Seismic Reinforcement Section Shape (내진보강 단면형상에 따른 국내 저수지 제방의 안전율에 대한 검토)

  • Lim, Seonghun;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.343-355
    • /
    • 2021
  • Agricultural reservoirs seek human convenience by supplying agricultural water and providing flood damage effects and rest areas at the same time, but preventing them from aging reservoirs and earthquakes is important. The safety of levees is influenced by field material properties such as soil parameter values of the granular materials that make up the levees, but since precision safety diagnosis or general literature values are diverted, the final safety factors are limited to material properties alone. Since safety factors are determined by physical characteristic values and embankment shapes and have a significant impact on safety factors, accurate contemplation is required when examining reinforced cross sections. Therefore, this study analyzed the case of reasonable and economical reinforcement intersections when designing '◯◯reservoir' in Goheung-geun, Jeollanam-do using the GEP-SLOPE program to enable rational economic design of reinforcement intersections through repeated reviews. As a result of reducing and analyzing the first, second, and third seismic reinforcement of the levees, it was confirmed that the safety ratio was secured even with a significantly smaller amount of reinforcement than the first, second, and lower slopes by obtaining design standards of 1.20. In addition, when determining all seismic reinforcement cross-sectional shapes, it was confirmed that the shape that reinforces only the lower side rather than the upper side of the slope and the entire slope was economical with minimized cross-sectional reinforcement.

Case Study on Influential Factors of Nonlinear Response History Analysis - Focused on 1989 Loma Prieta Earthquake - (비선형 응답이력해석의 영향인자에 대한 사례연구 - 1989 Loma Prieta 지진 계측기록을 중심으로 -)

  • Liu, Qihang;Lee, Jin-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.45-58
    • /
    • 2017
  • As many seismic codes for various facilities are changed into a performance based design code, demand for a reliable nonlinear response-history analysis (RHA) arises. However, the equivalent linear analysis has been used as a standard approach since 1970 in the field of site response analysis. So, the reliability of nonlinear RHA should be provided to be adopted in replace of equivalent linear analysis. In this paper, the reliability of nonlinear RHA is reviewed for a layered soil layer using Loma Prieta earthquake records in 1989. For this purpose, the appropriate way for selecting nonlinear soil models and the effect of base boundary condition for 3D analysis are evaluated. As a result, there is no significant differences between equivalent linear and nonlinear RHA. In case of 3D analysis, absorbing boundary condition should be applied at base to prevent rocking motion of the whole model.