• Title/Summary/Keyword: 내진검증

Search Result 315, Processing Time 0.03 seconds

6자유도 진동대 - 특성 및 활용방안

  • 이호섭
    • Journal of KSNVE
    • /
    • v.1 no.1
    • /
    • pp.7-19
    • /
    • 1991
  • 해사기술연구소가 보유하고 있는 6자유도 대형진동대의 시스템 구성과 시험파형 합성기법 및 시험방법에 대하여 간략히 살펴보았다. 통상적인 가진기가 1방향의 운동만을 구현할 수 있음에 비해, 6자유도 진동대는 3축병진, 3축 회전의 임의의 복잡운동을 구현할 수 있는 국내 유일의 설비이며 용량 또한 30톤의 시험체까지를 대상으로 한 대형 진동대로서 각종 분야에 필요한 진동시험 업무를 지원할 수 있다. 구조물의 방진 및 내진설계를 위해서는 가능한한 실물 또는 모형의 실증실험이 필수적이며, 이는 내진 해석기법의 개발 및 검증의 기초가 된다. 특히 이 시스템은 내진 검증시험에 필요한 모든 기능을 갖추고 있으므로, 앞으로 건설될 국내원자력 발전소에 이용되는 각종기기의 내진검증시험을 통하여 이들 기기의 국산화에 크게 이바지할 것으로 보인다.

  • PDF

Seismic Performance Evaluation of Seismic Strengthening Method using SRCF External Connection of Medium and Low-rise R/C Buildings (중·저층 철근콘크리트 건물의 SRCF 외부접합 내진보강공법의 내진성능 평가)

  • Lee, Kang-Seok;Jung, Jue-Seong;Lee, Jong-Kweon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2015
  • A new SRCF (Steel Reinforced Concrete Frame) external connection method for seismic strengthening of medium-and low-rise reinforced concrete buildings is reported in this paper. The SRCF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside building. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and deformation. Test results revealed that the proposed SRCF strengthening method installed in RC frame enhanced conspicuously the strength and deformation capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Study on Seismic Performance Evaluation and Verification of Seismic Safety for Power Cable Tunnels (개착식 전력구의 내진성능 평가 및 내진 안전성 검증)

  • Hwang, Kyeong-min;Chun, Nak-hyun;Chung, Gil-young;Park, Kyung-sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.439-445
    • /
    • 2020
  • In this paper, the seismic performance evaluation was performed on 100 existing open-cut power cable tunnels, including ones that did not consider seismic design, in order to verify that the government's demand level (seismic special grade, 0.22 g). The results of the seismic performance evaluation show that most of the tunnels have seismic performance of 0.3 to 1 g, satisfying the level of the seismic special grade and securing the seismic safety. Meanwhile, the earthquake response analysis and structural test were performed to verify the validity of the method and the results of the seismic performance evaluation of the tunnels by the response displacement method, and to verify their seismic safety. As a result, the relative displacement due to the response displacement method under the 0.22 g earthquake was conservative than the results of the earthquake response analysis, and the results of load-displacement curves and response modification coefficient calculation by real scale structural tests showed the safety of the tunnels.

ACB Panel의 산업안전 모델 개발

  • 서욱환
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.27-34
    • /
    • 2000
  • 산업 안전과 관련된 시스템에서 요구되는 것 중에서 필수적인 것은 내진 발생에 대비하는 검증이 있다. 이 논문은 내진 검증을 증명하고 장차 사용을 위한 증명된 유한요소 해석모델을 개발하는 방법이 제시되었다. 여기서 사용된 모델은 사우디아라비아의 RASCO사에서 사용되기 위해 현대중공업(주)에서 제작되었다.(중략)

  • PDF

Seismic Strengthening and Performance Evaluation of Damaged R/C Buildings Strengthened with Glass Fiber Sheet and Carbon Fiber X-Brace System (GFS-CFXB 내진보강법을 이용한 지진피해를 받은 R/C 건물의 내진성능 평가 및 내진보강 효과)

  • Lee, Kang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.667-674
    • /
    • 2013
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. This paper proposes a new seismic retrofit methodology combined with glass fiber sheet (GFS) and non-compression X-brace system using carbon fiber (CFXB) for reinforced concrete buildings damaged in earthquakes. The GFS is used to improve the ductility of columns damaged in earthquake. The CFXB consists of carbon fiber bracing and anchors, to replace the conventional steel bracing and bolt connection. This paper reports the seismic resistance of a reinforced concrete frame strengthened using the GFS-CFXB system. Cyclic loading tests were carried out, and the hysteresis of the lateral load-drift relations as well as ductility capacities were investigated. Carbon fiber is less rigid than the conventional materials used for seismic retrofitting, resulting in some significant advantages: the strength of the structure increased markedly with the use of CF X-bracing, and no buckling failure of the bracing was observed.

Fragility Analysis for Evaluation and Comparison of Seismic Performance of Building Structures (취약도 해석을 통한 빌딩구조물의 내진성능 비교 및 평가)

  • Park, Joo-Nam;Choi, Eun-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.11-21
    • /
    • 2007
  • Potential damage and losses associated with structural systems caused by earthquake can be reduced by application of seismic design to the structures. Because the building cost required for seismic design is generally higher than the cost for non-seismic design, the application of seismic design must be justified considering both seismic performance and cost. This paper presents a risk-based fiamework for evaluation and comparison of seismic performance of structures such that necessary data can be supplied for decision making on seismic design. Seismic fragility curve is utilized for seismic risk assessment of structures, and the process for decision analysis on adaptation of seismic design is presented based on the equivalent cost model.