• Title/Summary/Keyword: 내부 여유

Search Result 52, Processing Time 0.021 seconds

A 12b 200KHz 0.52mA $0.47mm^2$ Algorithmic A/D Converter for MEMS Applications (마이크로 전자 기계 시스템 응용을 위한 12비트 200KHz 0.52mA $0.47mm^2$ 알고리즈믹 A/D 변환기)

  • Kim, Young-Ju;Chae, Hee-Sung;Koo, Yong-Seo;Lim, Shin-Il;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.48-57
    • /
    • 2006
  • This work describes a 12b 200KHz 0.52mA $0.47mm^2$ algorithmic ADC for sensor applications such as motor controls, 3-phase power controls, and CMOS image sensors simultaneously requiring ultra-low power and small size. The proposed ADC is based on the conventional algorithmic architecture with recycling techniques to optimize sampling rate, resolution, chip area, and power consumption. The input SHA with eight input channels for high integration employs a folded-cascode architecture to achieve a required DC gain and a sufficient phase margin. A signal insensitive 3-D fully symmetrical layout with critical signal lines shielded reduces the capacitor and device mismatch of the MDAC. The improved switched bias power-reduction techniques reduce the power consumption of analog amplifiers. Current and voltage references are integrated on the chip with optional off-chip voltage references for low glitch noise. The employed down-sampling clock signal selects the sampling rate of 200KS/s or 10KS/s with a reduced power depending on applications. The prototype ADC in a 0.18um n-well 1P6M CMOS technology demonstrates the measured DNL and INL within 0.76LSB and 2.47LSB. The ADC shows a maximum SNDR and SFDR of 55dB and 70dB at all sampling frequencies up to 200KS/s, respectively. The active die area is $0.47mm^2$ and the chip consumes 0.94mW at 200KS/s and 0.63mW at 10KS/s at a 1.8V supply.

Analysis of target volume motion followed by induced abdominal compression in tomotherapy for prostate cancer (전립선암 환자의 복부압박에 따른 표적 움직임 분석)

  • Oh, Jeong Hun;Jung, Geon A;Jung, Won Seok;Jo, Jun Young;Kim, Gi Chul;Choi, Tae Kyu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.69-76
    • /
    • 2014
  • Purpose : To evaluate the changes of the motion of abdominal cavity between interfraction and intrafraction by using abdominal compression for reducing abdominal motion. Materials and Methods : 60 MVCT images were obtained before and after tomotherapy from 10 prostate cancer patients over the whole radiotherapy period. Shift values ( X -lateral Y -longitudinal Z -vertical and Roll ) were measured and from it, the correlation of between interfraction set up change and intrafraction target motion was analyzed when applying abdominal compression. Results : The motion changes of interfraction were X-average $0.65{\pm}2.32mm$, Y-average $1.41{\pm}4.83mm$, Z-average $0.73{\pm}0.52mm$ and Roll-average $0.96{\pm}0.21mm$. The motion changes of intrafraction were X-average $0.15{\pm}0.44mm$, Y-average $0.13{\pm}0.44mm$, Z-average $0.24{\pm}0.64mm$ and Roll-average $0.1{\pm}0.9mm$. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of $V_{20}$, $V_{10}$, $V_5$ of Lung show bo certain trend. Conclusion : Abdominal compression can minimize the motion of internal organs and patients. So it is considered to be able to get more ideal dose volume without damage of normal structures from generating margin in small in producing PTV.