• Title/Summary/Keyword: 내부 슬래브

Search Result 95, Processing Time 0.026 seconds

Numerical study on the connection type of inner-slab in double deck tunnel (복층터널 내부슬래브의 연결형식에 관한 수치해석적 연구)

  • Lee, Ho-Seong;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.441-451
    • /
    • 2016
  • This study analyzed behavior of the segment lining considering connection type between inner-slab and segment lining for a double deck tunnel by Shield TBM. In order to establish the design requirements of inner-slab and segment lining in double deck tunnel, inner structure of double deck tunnel at each purpose was analyzed and compared connection type between inner-slab and segment lining. And analyses have been carried out through the beam-spring model by MIDAS Civil 2012. As a result of this study, inner-slab, connection type of between inner-slab and segment lining and Lateral earth pressure coefficients were analyzed to verify the significant design factors.

One-Dimensional Heat Transfer Model to Predict Temperature Distribution in Voided slabs subjected to fire (화재 시 중공슬래브의 온도분포 예측을 위한 1방향 열전달 모델)

  • Chung, Joo-Hong;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • In general, a reinforced concrete slabs are known to have a high fire resistance performance due to thermal properties of concrete materials. However, according to previous research, the thermal behavior of voided slabs is reported to be different from that of conventional RC solid slabs, and the differences seem to be caused by the air layer formed inside the voided slab. Therefore, it is difficult to estimate the temperature distribution of the voided slab under fire by using the existing methods that do not take into account the air layer inside the voided slab. In this study, a numerical analysis model was proposed to estimate the temperature distribution of voided slabs under fire, and evaluated. Heat transfer of slabs under fire is generally caused by conduction, convection and radiation, and time-dependent temperature changes of slab can be determined considering these phenomena. This study proposed a numerical method to estimate the temperature distribution of voided slabs under fire based on a finite difference method in which a cross-section of the slab is divided into a number of layers. This method is also developed to allow consideration of heat transfer through convection and radiation in air layer inside of slabs. In addition, the proposed model was also validated by comparison with the experimental results, and the results showed that the proposed model appropriately predicts the temperature distribution of voided slabs under fire.

An Experimental Study for Bond Characteristics of Deformed Bar Embedded in Donut Type Biaxial Hollow Slab (도넛형 이방향 중공슬래브의 부착특성에 관한 실험적 연구)

  • Chung, Joo-Hong;Kang, Sung-Hoon;Lee, Seung-Chang;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • This study investigated the bond characteristics of embedded deformed steel bar in donut type biaxial hollow slabs. The donut type hollow sphere make concrete inner cover formed between steel bar and hollow sphere due to the hollow shape and arrangement. Generally, inner cover was thinner than outer cover, and some part of donut type biaxial hollow slab has smaller inner cover thickness than $2.5d_b$. It was affected to the bond condition of deformed bar. Furthermore, inner cover thickness changes along the longitudinal deformed bar due to hollow shape. Therefore, donut type hollow slab was divided 3 regions according to the hollow shape such as insufficient region, transition region, sufficient region. Pull-out test were performed to find out the effect of bond condition by the region. Main parameters are inner cover thickness, embedded length and bond location. Bond characteristics of donut type biaxial hollow slab were confirmed through comparison of bond stress-slip relationship, maximum bond strength and bond stress distribution of each regions. And the calculation method of bond strength of donut type biaxial hollow slab was suggested based on the test results.

Evaluation of Blast Resistance of Slab-Column Connections According to the Confinement Effects and Drop Panel (슬래브-기둥 접합부의 구속도 및 드롭패널에 따른 방폭 성능 평가)

  • Lim, Kwang Mo;Lee, Joo Ha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.451-457
    • /
    • 2017
  • The numerical analysis was conducted to evaluate the behavior of slab-column connection subjected to blast loads using LS-DYNA. The typical form of slab-interior column connection for analysis was considered as a reference specimen and the drop panel slab-interior column was designed to verify the effects of drop panel. The slab-column connections, which were composed of interior, edge and corner column, were additionally analyzed to compare their confinement effects of specimens. Analysis results were contained the failure shape of connection, behavior of member and so on. From the results, the blast-resistant capacities of slab-column connection would be enhanced by reinforcing the drop panel. In addition, the performance of connections could be improved, when the confinement effects were enhanced.

Shear Strength Model for Interior Flat Plate-Column Connections (무량판 슬래브-기둥 내부 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.345-356
    • /
    • 2010
  • An alternative design method for interior flat plate-column connections subjected to punching shear and unbalanced moment was developed. Since the slab-column connections are severely damaged by flexural cracking before punching shear failure, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the flexural moment of the slab, the punching shear strength of the compression zone was evaluated based on the material failure criteria of concrete subjected to multiple stresses. The punching shear strength was also used to evaluate the unbalanced moment capacity of the slab-column connections. For verification, the proposed strength model was applied to existing test specimens subjected to direct punching shear or combined punching shear and unbalanced moment. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods in ACI 318 and Eurocode 2.

Load Transfer Capacity for the Planar Joints between Existing Slab Retrofitted with Carbon Fiber Plate and New Slab (탄소판으로 보강된 기존 슬래브와 신규 슬래브 접합부의 횡방향 하중전달 능력)

  • Kim, Seung Hun;You, Young Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.117-124
    • /
    • 2007
  • An experimental research has been performed to evaluate the load transfer capacity for the planar joints between existing and new slab in an apartment remodelling constructions expecially for enlarging the interior space. Post-installed dowel bars were used as a joint connector. The existing slabs were obtained from the existing apartment housing which will be demolished, and were retrofitted with carbon fiber plate. Test results showed that the planar joints with post-installed dowel bars behaved in full composite modes until ultimate capacity of test specimens, so sufficient ultimate and serviceability performance are confirmed.

Shear Performance Analysis of One-way Hollow Slab According to Shear Reinforcement (전단 보강 유무에 따른 일방향 중공슬래브의 전단 성능 분석)

  • Yoon, Sung-Wook;Seok, Keun-Young;Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.97-104
    • /
    • 2014
  • Hollow slab is a floor system which reduces the load of vertical structural members and earthquake load by decreasing self-weight of slab. Although hollow slab can reduce self-weight of slab remarkably, flexural strength and shear strength reduce due to the hollow section inside the slab, so it is very important to predict structural behavior. In spite of plenty of domestic and foreign studies on hollow slab, there is a shortage of research on shear performance according to shear reinforcement of one-way hollow slab. Therefore, this study aims to verify the need for shear reinforcement of one-way hollow slab by analyzing failure modes of one-way hollow slab depending on the state of shear reinforcement and comparing shear strengths of estimation formula and experimental value with one another.

Development of Precast Slab Track Reinforced with GFRP and Analysis of Behavior (GFRP로 보강된 프리캐스트 슬래브 궤도 개발 및 거동분석)

  • Zi, Goang-Seup;Lee, Seung-Jung;Moon, Do-Young;Kim, Yoo-Bong;Baek, In-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2072-2076
    • /
    • 2011
  • 철도 시스템에서 철도궤도와 레일은 주요한 신호 시스템의 일부로 사용되고 있으나 콘크리트 슬래브 궤도 내부의 철근으로 인한 신호전류 감소, 교란 등을 방지하기 위해 과도한 절연작업이 필요하다. 본 연구에서는 국내에서 기 개발된 프리캐스트 슬래브 궤도의 횡방향 철근을 GFRP 보강근으로 대체하여 절연작업의 감소를 가능하게 하였다. GFRP로 보강된 프리캐스트 슬래브 궤도의 설계과정과 정적 휨 시험과 단부의 연결철근 인발 시험을 통한 거동 분석 및 고찰 내용을 제시하였다. 휨 시험과 실스케일 인발 시험의 결과 정적 휨 강도는 정립된 설계법에 의해 적절한 강도를 가지고 있으나 기 개발된 연결철근의 위치와 형태는 온도 또는 수축으로 인해 발생할 수 있는 축력을 저항할 수 없음을 확인하였다.

  • PDF

Experimental Study on Flexural Performance of Composite Slabs Reinforced with GFRP-Deckplate (GFRP-데크플레이트로 보강한 합성 슬래브의 휨성능 평가에 관한 실험적 연구)

  • Choi, Bong-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.165-170
    • /
    • 2009
  • In this study, the flexural experiment was conducted to propose the one-way composite slab system composed of concrete and GFRP-Deckplate by comparing with the composite deck slab system with bar-mesh As a result of experiment, the specimens of the proposed GFRP-Deck composite slab were better than the specimens for comparison in the flexural performance. It is effective for the building structures exposed to air pollution or salt.

A study on the structural safety of middle slab in double deck tunnel under live loads (활하중에 대한 복층터널 슬래브의 구조적 안전성에 관한 연구)

  • Kim, Tae Kyun;Kim, Se Kwon;Kim, Hyun Jun;Kim, Chang Young;Yoo, Wan Kyu;Hwang, Sung-Pil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The purpose of this study is to analyze in advance the problems and improvements that may occur during the construction of intermediate slabs and the loading of intermediate slabs through the preliminary structural safety evaluation of intermediate slabs for Test bed structures in deep depth tunnels. The Test bed construction can verify and confirm the results of the design and construction technology development of large depth double deck tunnel through the process, and can also be used as a learning site for engineers and the general public to speed up the time of underground space development. There will be an opportunity to do this. In particular, the design load of middle slab built inside the circular deep-depth double-sided tunnel cross-section varies depending on the construction method and the construction equipment load used. Class 3 truck load of KL-510 assumed to be common load to upper and middle slab during loading and installation is loaded on upper and lower slab with different working position for each load combination Analyzed.