• Title/Summary/Keyword: 내부 공극

Search Result 289, Processing Time 0.025 seconds

Preparation and Characterization of Biodegradable Superporous Hydrogels (생분해성을 갖는 초다공성 수화젤의 제조 및 특성분석)

  • Yuk, Kun-Young;Choi, You-Mee;Park, Jeong-Sook;Kim, So-Yeon;Park, Ki-Nam;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.469-476
    • /
    • 2009
  • In this study, biodegradable superporous hydrogels(SPHs) with fast swelling and superabsorbent properties were prepared using biodegradable crosslinkers and their physicochemical properties were characterized. A biodegradable crosslinker (PLA-PEG-PLA DA) was synthesized by a ring opening polymerization of D,L-lactide (LA) using hydrophilic poly(ethylene glycol) as a macroinitiator, followed by diacrylation of the end groups for the introduction of polymerizable vinyl groups. Various kinds of hydrogels with different chemical compositions were prepared and characterized in terms of swelling ratio, swelling kinetics, and biodegradation properties. The synthetic results were confirmed by $^1H$-NMR, FT-IR and GPC measurements, and the porous structures of the prepared SPHs and their porosities were identified by a scanning electron microscope and mercury porosimetry, respectively. The physicochemical properties of SPHs could be controlled by varying their chemical compositions and their cytotoxicity were found to be very low by MTT assay.

Long-term Variation of Radon in Granitic Residual Soil at Mt. Guemjeong in Busan, Korea (화강암 잔류 토양의 토양 가스 중 라돈의 장기적 변화 특성)

  • Moon, Ki-Hoon;Kim, Jin-Seop;Ahn, Jung-Keun;Kim, Hyun-Chul;Lee, Hyo-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.279-291
    • /
    • 2009
  • Radon is a natural radionuclide originated from radioactive decay of radium in rocks and soil. It is colorless, odorless and tasteless elements that mainly distributed as gaseous phase in soil pore space. The present study analyzed the characteristics of long-term radon variation in granitic residual soil at Mt. Guemjeong in Guemjeong-gu, Busan and determined the effects of atmospheric temperature, rainfall and soil temperature and moisture. Periodic measurements of radon concentrations in soil gas were conducted by applying two types of in-situ monitoring methods (chamber system and tubing system). Radon concentration in soil gas was highest in summer and lowest in winter. The variations in soil temperature and atmospheric temperature were most effective factors in the long-term radon variations and showed positive co-relations. The air circulation between soil air and atmosphere by the temperature difference between soil and atmosphere was analyzed a major cause of the variation. However, other factors such as atmospheric pressure, rainfall and soil moisture were analyzed relatively less effective.

Thermal Decomposition of Arsenopyrite by Microwave Heating and the Effect of Removal Arsenic with Wet-magnetic separation (마이크로웨이브 가열에 의한 황비철석의 열분해와 습식-자력선별에 의한 비소 제거 효과)

  • On, Hyun-Sung;Kim, Hyun-Soo;Myung, Eun-Ji;Lim, Dae-Hack;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.103-112
    • /
    • 2017
  • In order to transform arsenopyrite into pyrrhotite and to decrease As content by less than 2,000 mg/kg, pulp sample and non-magnetic pulp sample were heated in a microwave oven at different heating times and were separated through wet-magnetic separation. As the microwave heating time increased, the phase of pyrrhotite was extended to become arsenopyrite entirely. The melting pores and micro-cracks occurred on the pyrrhotite due to hot spot phenomenon with microwave heating. The heated raw pulp sample (As content : 19,970.13 mg/kg) and non-magnetic pulp sample (As content : 19,970.13 mg/kg) which were heated in a microwave oven for 10 minutes were separated through wet-magnetic separation and magnetic fraction containing less than 2,000 mg/kg of As content was recovered only from the heated sample of magnetic separation. It was discovered that for the sulfide complex ore with As penalty imposed on, if microwave heating and wet-magnetic separation are effectively utilized, magnetic fraction. We expect to be able to obtain ore minerals with an arsenic content below the penalty charge.

Strength and Resistance to Chloride Penetration in Concrete Containing GGBFS with Ages (GGBFS를 혼입한 콘크리트의 재령에 따른 강도 및 염소이온 침투 저항성)

  • Park, Jae-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.307-314
    • /
    • 2017
  • Concrete is a durable and cost-benefit construction material, however performance degradation occurs due to steel corrosion exposed to chloride attack. Penetration of chloride ion usually decreases due to hydrates formation and reduction of pores, and the reduced chloride behavior is considered through decreasing diffusion coefficient with time. In the work, HPC (High Performance Concrete) samples are prepared with 3 levels of W/B (water to binder) ratios of 0.37, 0.42, and 0.27 and 3 levels of replacement ratios of 0%, 30% and 50%. Several tests containing chloride diffusion coefficient, passed charge, and compressive strength are performed considering age effect of 28 days and 180 days. Chloride diffusion is more reduced in OPC concrete with lower W/B ratio and GGBFS concrete with 50% replacement ratio shows significant reduction of chloride diffusion in higher W/B ratio. At the age of 28 days, GGBFS concrete with 50% replacement ratio shows more rapid reduction of chloride diffusion than strength development, which reveals that abundant GGBFS replacement has effective resistance to chloride penetration even in the early-aged condition.

The Thermal Conduction Property of Structural Concrete using Insulation Performance Improvement Materials (단열성능향상 재료를 사용한 구조용 콘크리트의 열전도 특성)

  • Park, Young-Shin;Kang, Min-Gi;Kim, Jung-Ho;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The part of a building with the biggest energy loss is the exterior and many studies are actively conducted to reduce the energy loss on that part. However, most studies consider the window frames and insulation materials, but many studies do not discuss the concrete that takes more than 70% of the exterior. In order to minimize the energy loss of buildings, it is necessary to enhance the concrete's insulation performance and studies need to be conducted on this. Therefore, this study used a micro foam cell admixture, calcined diatomite powder, and lightweight aggregates as a part of a study to develop a type of concrete with improved insulation performance that has twice higher thermal conductivity compared to concrete. It particularly secured the porosity inside concrete to lower thermal conductivity. As a result of the experiment, the slump and air capacity showed fair results, but all mixtures containing micro foaming agent showed 14.3~35.1% lower mass per unit of volume compared to regular concrete. Compressive strength decreased slightly due to the materials used to improve the insulating performance, but it all satisfied this study's target strength(24MPa). Thermal conductivity was up to twice higher than that of regular concrete.

Analysis of Fundamental Properties of Concrete Using Mix of Coarse Aggregate With Formation Causes (성인이 다른 굵은 골재를 혼합사용한 콘크리트의 기초적 특성 분석)

  • Noh, Sang-Kyun;Kim, Young-Hee;Kim, Jeong-Bin;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Recently, attempts of replacing some of natural aggregate with mix of low quality aggregate are carried out for stable supply of aggregate. However, low quality aggregate such as recycled aggregate produced during the disposal process of construction wastes and by-product aggregate produced by industrial activities has problem of failing to comply to KS Standards. Therefore, we have compared fundamental properties of concrete by using granite crushed aggregate, recycled aggregate, blast furnace and electric arc furnace slag aggregate for effective utilization of lacking aggregate resources. As the result, slump in case of mixed use of aggregate was increased 0~10% compared to single use. Therefore, it is judged to be economically advantageous as it can expect effects in unit quantity or reduction of SP agent. Compressive strength in case of mixed use of aggregate was increased 0~10% compared to single use as it filled internal crevice of concrete with continuous particle size distribution. Accordingly, if we utilize by satisfying standard particle scope through mix of aggregate with different cause of formation in proper ratio, it was possible to confirm utility of mixed aggregate with demonstration of effects of increases of fluidity and compressive strength of concrete.

Numerical Assessment of Tensile Strain Capacity for X80 Line Pipe Using GTN Model (GTN 모델을 이용한 X80 라인파이프의 인장 변형성능 해석)

  • Yoon, Young-Cheol;Kim, Ki-Seok;Lee, Jae Hyuk;Cho, Woo-Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.979-990
    • /
    • 2016
  • This study presents a nonlinear finite element procedure involving a phenomenological model to validate the tensile strain capacity of the X80 line pipe developed for the strain-based design purpose. The procedure is based on the Gurson-Tvergaard-Needleman (GTN) model, which models nucleation, growth and coalescence of void volume fraction occurred inside a metal. In this study, the user-defined material module (UMAT) is implemented in the commercial finite element platform ABAQUS and is applied to the nonlinear damage analysis of steel specimens. Material parameters for the nonlinear damage analysis of base and weld metals are calibrated from numerical simulations for the tensile tests of round bar and full thickness specimens. They are then employed in the numerical simulations for SENT (Single Edge Notch Tension) test and CWPT (Curved Wide Plate Test) and in the simulations, the tensile strain capacities are naturally evaluated. Comparison of the numerical results with the experimental results and the conventional empirical formulae shows that the proposed numerical procedure can fairly well predict the tensile strain capacity of X80 line pipe. So, it is readily expected to be effectively applied to the strain-based design procedure.

Effects of Concentration of $NO_3^--N$, K and Ca in nutrient solution on Seedling Growth of Mudeungsan Watermelon (배양액내 $NO_3^--N$, K 및 Ca의 농도가 무등산수박 유묘의 생장에 미치는 영향)

  • 박순기;이범선;정순주
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.05a
    • /
    • pp.153-157
    • /
    • 1998
  • 무등산 수박의 유묘 생산에 있어 적정 배양액 농도를 구명하기 위하여 일본원시균형배양액을 기준으로 하여 NO$_3$-N, K 및 Ca의 농도별 첨가량에 따른 유묘생장반응을 조사하였다. 1. 배양액내 질소농도을 증가시킬수록 초장, 엽면적, 엽수, 엽장, 엽폭이 증가하였으며 생체중과 건물중도 증가하였다. 2. 배양액내 칼륨의 농도를 증가시켰을 경우 수박 유묘의 초장은 200ppm까지는 약간 증가하지만 엽면적, 엽수, 엽장, 생체중 및 건물중은 200ppm이상으로 증가시키면 감소하는 경향이었다. 3. 칼슘처리의 경우 농도의 증가가 생장의 증가를 나타내지는 않았으며 원시균형 배양액의 표준이라 할 수 있는 80ppm처리구의 생장이 양호한 것으로 나타났다. 4. 배양액(일본원시균형배양액 1/2농도)에 N의 농도를 200ppm으로 증가시킬 경우 수박유묘의 엽병내 N, K 및 Mg의 함량이 증가하였지만 P 및 Ca의 증가나 감소의 경향은 보이지 않았다. 5. K의 농도를 100ppm으로 증가시킬 경우 수박유묘의 엽병내 N, K 및 Mg의 함량이 증가하였지만 P 및 Ca의 증가나 감소의 경향은 보이지 않았다. 5. K의 농도를 150ppm으로 증가시킬 경우 수박유묘의 엽병내 N, K 및 Mg의 함량이 증가하였지만 P 및 Ca의 증가나 감소의 경향은 보이지 않았다. 그러나 200ppm이상으로 증가시킬 경우 N과 Mg의 감소가 나타났다. 6. 양액내 Ca의 농도를 증가시킬수록 엽병내 N, K Ca 및 Mg의 농도가 증가하는 반면 P의 경우 거의 변화가 없었으며,N의 경우는 200ppm 이상의 농도에서 감소하는 경향을 나타내었다. Mg의 경우는 150ppm까지는 함량의 변화가 없었지만 200ppm 이상의 처리구에서 급격한 함량증가를 나타내었다.~21.2ml가 흘러나와 배지의 공극이 일정하지 않아 시간당 통과하는 양이 일정하지 않았다고 생각되었다. $\bigcirc$ 펄라이트 : 합섬A(비스코스+레이온)급액천의 유입은 소(1$\times$60cm)에서 21.8ml, 중(2$\times$60cm) 33.5ml, 대(3$\times$60cm) 43.4ml가 통과되었고 합섬(폴리에스텔)에서는 19.0~30.7ml로서 급액천의 규격에 따라 통과되는 차이가 있었다. 배지가 규격화되어 있어 급액천의 규격별로 일정하게 유입되었으며 급액천의 재질이 유입에 영향을 미친 것으로 사료되었다. (2) 급액관과 베드상과의 높이에 따른 유출양 : 급액과 베드상과의 낙차가 클수록 유출이 증가함을 알수 있었으나 합섬C(인견)실험구에서는 낙차가 유출에 영향을 미치지 않았다. (4) 급액된 양액의 EC 및 pH조사 : 급액된 양액의 EC 및 pH에 전혀 변화가 없어 재배 적응에 문제가 없을것으로 사료되었다.이가 가장 이상적인 것으로 생각된다.세포수에 대한 내부세포괴세포(ICM/total cells)가 20~40% 범주에 드는 비율은 처리구가 대조구보다 낮은 결과를 나타냈다. 결론적으로 돼지난포란을 이용하여 체외성숙을 유기할 때 효과적인 cysteamine의 농도는 50$\mu$M이 적당하며, 초기배발달을 유기할 때의 효과적인 cysteamine의 농도는 25~50$\mu$M인 것으로 판단된다.N)A(N)/N을 제시하였다(A(N)=N에 대한 A값). 위의 실험식을 사용하여 헝가리산 Zempleni 시료(15%$S_{XRD}$)의 기본입자분포로부터 %$S_{XRD}$를 계산한

  • PDF

Variations of Physico-Mechanical Properties of the Cretaceous Mudstone in Haman, Gyeongnam due to Freeze-Thaw Weathering (경남 함안군 백악기 이암의 동결-융해에 따른 물성변화 및 미세균열 발현특성)

  • Um, Jeong-Gi;Shin, Mi-Kyoung
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.146-157
    • /
    • 2009
  • An experimental study of accelerated weathering on mudstone sample specimens from Haman, Gyeongnam was performed to investigate the variations of physico-mechanical properties of deteriorated rocks due to freeze-thaw weathering. Each complete cycle of freeze and thaw lasted 24 hours, comprising 2 hours of saturating in vacuum chamber, 8 hours of freezing at $-16{\pm}1^{\circ}C$ and 14 hours of thawing at room temperature. Total of 55 cycles of freeze-thaw were completed with measuring the index properties as well as geometries of microfractures. The measured specific gravity and P-wave velocity found to decrease with increasing freeze-thaw cycles. On the other hand, absorption ratio and effective porosity were continuously increased with increasing freeze-thaw cycles. It was found that the index properties of deteriorated sample specimen depend on its initial properties and flaws in rock. The size and density of the traces of the microfracture on slab specimen exhibited abrupt changes after 30 cycles of freeze-thaw weathering. The results obtained in this study show that the box fractal dimension($D_B$) given in this paper has the strong capability of quantifying the size and density of the microfracture.

Settlement Characteristics of a Large-Scale Foundation over a Sabkha Layer Consisting of Carbonate Sand (Sabkha층 탄산질 모래의 침하특성 및 상부기초의 거동)

  • Kim, Seok-Ju;Han, Heui-Soo
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.247-256
    • /
    • 2013
  • The carbonate sands of the Sabkha layer in the Middle East have very low shear strength. Therefore, instant settlement and time-dependent secondary settlement occur when inner voids are exposed, as in the case of particle crushing. We analyzed settlement of the Sabkha layer under a large-scale foundation by hydrotesting, and compared the field test results with the results of laboratory tests. With ongoing particle crushing, we observed the following stress-strain behaviors: strain-hardening (Sabkha GL-1.5 m), strain-perfect (Sabkha GL-7.0 m), and strain-softening (Sabkha GL-7.5 m). General shear failure occurred most frequently in dense sand and firm ground. Although the stress-strain behavior of Sabkha layer carbonate sand that of strain-softening, the particle crushing strength was low compared with the strain-hardening and strain-perfect behaviors. The stress-strain behaviors differ between carbonate sand and quartz sand. If the relative density of quartz sand is increased, the shear strength is also increased. Continuous secondary compression settlement occurred during the hydrotests, after the dissipation of porewater pressure. Particle crushing strength is relatively low in the Sabkha layer and its stress-strain behavior is strain-softening or strain-perfect. The particle crushing effect is dominant factor affecting foundation settlement in the Sabkha layer.