DOI QR코드

DOI QR Code

Thermal Decomposition of Arsenopyrite by Microwave Heating and the Effect of Removal Arsenic with Wet-magnetic separation

마이크로웨이브 가열에 의한 황비철석의 열분해와 습식-자력선별에 의한 비소 제거 효과

  • On, Hyun-Sung (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Kim, Hyun-Soo (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Myung, Eun-Ji (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Lim, Dae-Hack (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Park, Cheon-Young (Dept. of Energy and Resource Engineering, Chosun University)
  • 온현성 (조선대학교 에너지.자원공학과) ;
  • 김현수 (조선대학교 에너지.자원공학과) ;
  • 명은지 (조선대학교 에너지.자원공학과) ;
  • 임대학 (조선대학교 에너지.자원공학과) ;
  • 박천영 (조선대학교 에너지.자원공학과)
  • Received : 2017.08.17
  • Accepted : 2017.09.26
  • Published : 2017.09.30

Abstract

In order to transform arsenopyrite into pyrrhotite and to decrease As content by less than 2,000 mg/kg, pulp sample and non-magnetic pulp sample were heated in a microwave oven at different heating times and were separated through wet-magnetic separation. As the microwave heating time increased, the phase of pyrrhotite was extended to become arsenopyrite entirely. The melting pores and micro-cracks occurred on the pyrrhotite due to hot spot phenomenon with microwave heating. The heated raw pulp sample (As content : 19,970.13 mg/kg) and non-magnetic pulp sample (As content : 19,970.13 mg/kg) which were heated in a microwave oven for 10 minutes were separated through wet-magnetic separation and magnetic fraction containing less than 2,000 mg/kg of As content was recovered only from the heated sample of magnetic separation. It was discovered that for the sulfide complex ore with As penalty imposed on, if microwave heating and wet-magnetic separation are effectively utilized, magnetic fraction. We expect to be able to obtain ore minerals with an arsenic content below the penalty charge.

광액시료와 비-자성광액시료에 포함된 황비철석을 자류철석으로 상변환 시키기 위하여 그리고 비소 함량을 2,000 mg/kg 이하로 제거하기 위하여 마이크로웨이브 장치를 다양한 시간으로 가열하였고, 습식-자력선별하였다. 마이크로웨이브 가열시간이 증가함에 따라 황비철석 표면의 가장자리부터 자류철석으로 상변환이 일어났고, 열점 현상에 의하여 자류철석 내부에 용융공극과 마이크로-크랙들이 형성되었다. 마이크로웨이브 가열을 10분간 수행한 광액시료(비소 함량 : 14,732.66 mg/kg)와 비-자성 광액시료(비소 함량 : 19,970.13 mg/kg)를 습식-자력선별하여 자성광물로 분리시킨 결과, 10분 가열한 자성광물 시료에서 만 비소 함량이 2,000 mg/kg 이하로 나타났다. 따라서 향후 비소 페널티부과 대상인 복합황화광물을 마이크로웨이브 가열과 습식-자력선별을 효과적으로 활용하면, 비소 함량을 페널티 부과대상 이하의 광석광물을 얻을 수 있을 것으로 기대한다.

Keywords

References

  1. Alp, I., Celep, O., and Deveci, H. (2010) Alkaline sulfide pretreatment of an antimonial refractory Au-Ag ore for improved cyanidation, JOM, 62, 41-44.
  2. Aylmore, M.G. and Klerk, L.W. (2013) Conditions and design considerations for maximising recoverable gold in roasting of refractory gold ores, World Gold Conference/Brisbane, QLD, 26-29 September 2013, 14p.
  3. Balcerzak, M. (2002) Sample digestion methods for the determination of traces of precious metals by spectrometric techniques, Analytical Sciences, 18, 737-750. https://doi.org/10.2116/analsci.18.737
  4. Bluhm, Delwyn D., Fanslow, Glenn., and Nelson, Stuart O. (1986) Enhanced Magnetic Separation of Pyrite from Coal Afer Microwave Heating, IEEE transactions on magnetics, 22, 1887-1890. https://doi.org/10.1109/TMAG.1986.1064686
  5. Boyabat, N., Ozer, A.K., Bayrakceken, S., and Gulaboglu, M.S. (2003) Thermal decomposition of pyrite in the nitrogen atmosphere, Fuel Processing Technology, 85, 179-188.
  6. Butcher, D.A. and Rowson, N.A. (1995) Microwave pretreatment of coal prior to magnetic separation, Magnetic and Electrical Separation, 6, 87-97. https://doi.org/10.1155/1995/90127
  7. De Michelis, I., Olivieri, A., Ubaldini, S., Ferella, F., Beolchini, F., and Veglio, F. (2013) Roasting and chlorine leaching of gold-bearing refractory concentrate: experimental and process analysis, International Journal of Mining Science and Technology, 23, 709-715. https://doi.org/10.1016/j.ijmst.2013.08.015
  8. Dunn, J.G. and Chamberlain, A.C. (1997) The recovery of gold from refractory arsenopyrite concentrate by pyrolysis-oxidation, Minerals Engineering, 10, 919-928. https://doi.org/10.1016/S0892-6875(97)00074-5
  9. Fornasiero, D., Fullston, D., Li, C., and Ralston, J. (2001) Separation of enargite and tennantite from non-arsenic copper sulfide minerals by selective oxidation or dissolution, Internaltional Journal of Mineral processing, 61, 109-119. https://doi.org/10.1016/S0301-7516(00)00029-6
  10. Fullston, D., Fornasiero, D., and Ralston, J. (1999) Oxidation of synthetic and natural samples of enargite and tennantite: 1 dissolution and zeta potential study, Langmuir, 15, 4524-4529. https://doi.org/10.1021/la981526o
  11. Haque, K. E. (1999) Microwave energy for mineral treatment processes a brief review, International Journal of Mineral Processing, 57, 1-24. https://doi.org/10.1016/S0301-7516(99)00009-5
  12. Kim, D. K. (2014) Secondary Damage from an Environmental Pollution Incident and the Restoration Process : Focusing on A Village Near Janghang Smelter, Journal of Social Science, 25(3), 29, 267-295.
  13. Lane, D.L., Cook, N.J., Grano, S.R., and Ehring, K. (2016) Selective leaching of penalty elements from copper concentrates: a review, Minerals Engineering, 98, 110-121. https://doi.org/10.1016/j.mineng.2016.08.006
  14. Liu, Z., Lei, H.Y., Bai, T., Wang, W.Z., Chen, K., Chen, J.J., and Hu, Q.W. (2015) Microwave-assisted arsenic removal and the magnetic effect of typical arsenopyrite-bearing mine tailing, Chemical Engineering Journal, 272, 1-11. https://doi.org/10.1016/j.cej.2015.02.084
  15. Marcoux, E., Belkabir, A., Gibson, H.L., Lentz, D., and Ruffet, G. (2008) Draa Sfar, Morocco: a visean(331 Ma) pyrrhotite-rich, polymetallic volcanogenic massive sulphide deposit in a Hercynian sediment-dominant terrane, Ore Geology Reviews, 33, 307-328. https://doi.org/10.1016/j.oregeorev.2007.03.004
  16. Mikhail, S.A. and Turcotte, A.M. (1992) Thermal decomposition of arsenopyrite in the presence of calcium oxide, Thermochimica Acta, 212, 27-37. https://doi.org/10.1016/0040-6031(92)80217-K
  17. Plackowski, C., Nguyen, A.V., and Bruckard, W.J. (2012) A critical review of surface properties and selective flotation of enargite in sulphide systems, Minerals Engineering, 30, 1-11. https://doi.org/10.1016/j.mineng.2012.01.014
  18. Pracejus, B. (2008) The ore minerals under the microscopy; an optical guide, Elsevier, 875p.
  19. Senior, G.D., Guy, P.J., and bruckard, W.J. (2006) The selective flotation of enargite from other copper minerals-a single mineral study in relation to beneficiation of the Tampakan deposit in the Philippines, International Journal of Mineral processing, 81, 15-26. https://doi.org/10.1016/j.minpro.2006.06.001
  20. Smith, L.K. and Bruckard, W.J. (2007) The separation of arsenic from copper in a Northparkes copper-gold ore using controlled-potential flotation, International Journal of Mineral processing, 84, 15-24. https://doi.org/10.1016/j.minpro.2007.05.002
  21. Stafilov, T. (2000) Determination of trace elements in minerals by electrothermal atomic absorption spectrometry, Spectrochemica Acta Part B, 55, 893-906. https://doi.org/10.1016/S0584-8547(00)00227-5
  22. Su, X.J., Ma, S.J., He, C.L., Liang, Y.S., and Chen, Y.Q. (2014) Direct microwave roasting of arsenic-bearing pyritic concentrates, Journal of Microwave Power and Electromagnetic Energy, 48, 81-88. https://doi.org/10.1080/08327823.2014.11689873
  23. Thomas, K.G. and Cole, A.P. (2005) Roasting developments-especially oxygenated roasting, In; Mike, D.(eds), Developments in Mineral processing, 15, 403-432.
  24. Tongamp, W., Takasaki, Y., and Shibayama, A. (2009) Arsenic removal from copper ores and concentrates through alkaline leaching in NaHS media, Hydrometallurgy, 213-218.
  25. Twyman, R.M. (2005) Sample dissolution for elemental analysis/Wet digestion, Analytical Chemistry, 360, 146-152.
  26. Uslu, T., Atalay, U., and Arol, A.I. (2003) Effect of microwave heating on magnetic separation of pyrite, Colloids and Surfaces, 225, 161-167. https://doi.org/10.1016/S0927-7757(03)00362-5
  27. Walker, S.R., Jamiseon, H.E., Lanzirotti, A., Hall, G.E.M., and Peterson, R.C. (2015) The effect of ore roasting on arsenic oxidation state and solid phase speciation in gold mine tailings, Geochemistry: Exploration, Environment, Analysis, 15, 273-291. https://doi.org/10.1144/geochem2013-238
  28. Yoshikawa, N., Xie, G., Cao, Z., and Louzguine, D.V. (2012) Microwavestructure of selectively heated(hot spot) region in $Fe_3O_4$ powder compacts by microwave irradiation, Journal of the European Ceramic Society, 32, 419-424. https://doi.org/10.1016/j.jeurceramsoc.2011.08.028

Cited by

  1. Observability of Invisible Gold using BSE Imagery and Gold Recovery by Microwave-Nitric Acid Leaching vol.57, pp.1, 2017, https://doi.org/10.32390/ksmer.2020.57.1.001