• Title/Summary/Keyword: 내부충전 콘크리트

Search Result 78, Processing Time 0.024 seconds

Shear Strength Enhancement of Hollow PHC Pile Reinforced with Infilled Concrete and Shear Reinforcement (내부충전 콘크리트와 전단철근을 이용한 중공 PHC말뚝의 전단보강 효과)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.71-78
    • /
    • 2012
  • In order to improve the shear strength of conventional pre-tensioned spun high strength concrete (PHC) pile, concrete-infilled composite PHC (ICP) pile, a PHC pile reinforced by means of shear reinforcement and infilled concrete, is proposed. Two types of specimens were cast and tested according to KS (Korean Standards) to verify the shear strength enhancement of ICP pile. Based on the test results, it was found that the KS method was not suitable due to causing shear failure of ICP pile. However, shear strength enhancement was clearly verified. The obtained shear strength of the ICP pile was more than twice that of conventional PHC pile. In addition, the shear strength of ICP pile reinforced with longitudinal reinforcement was estimated to be more than 2.5 times greater than that of conventional PHC pile. The allowable shear force of ICP pile, which was determined by the allowable stress design process, indicated a large safety factor of more than 2.9 compared to the test results.

Moment-Curvature Relation of Concrete Filled Circular Steel Tubular Beam with Nonlinear Stress-Strain Properties (비선형 응력-변형률 특성을 갖는 콘크리트 충전 원형강관 보의 모멘트-곡률 관계)

  • Park, Woo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.195-202
    • /
    • 2005
  • This paper presents moment-curvature analytical method of concrete filled steel tubular members considering intensity increase phenomenon by triaxial compression stress generation. For this purpose, this study considers buckling characteristics about compression department of steel members that filled up light weight and normal concrete. The analytical results are compared with the test results. Even if beam that filled up light weight concrete was calculated moment-curvature relationship easily analytically and could know that analytical results estimates as well agreed with the test results in case filled up normal concrete. In addition, the efficiency and applicabilities of the proposed moment curvature relationship algorithm are verified through conventional experimental results.

A Evaluation on the Field Application of High Strength Concrete for CFT Column (고강도 CFT용 콘크리트의 현장적용성 평가 및 장기거동 예측)

  • Park, Je Young;Chung, Kyung Soo;Kim, Woo Jae;Lee, Jong In;Kim, Yong Min
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.707-714
    • /
    • 2014
  • CFT (Concrete-Filled Tube) is a type of steel column comprised of steel tube and concrete. Steel tube holds concrete and the concrete inside tube takes charge of compressive load. This study presents structural performance of the CFT column which has 73~100 MPa high strength concrete inside. Fluidity, mechanical compression, pump pressure test in flexible pipe were conducted for understanding properties of the high strength concrete. Material properties were achieved by various experimental tests, such as slump, slump flow, air content, U-box, O-Lot, L-flow. In addition, mock-up tests were conducted to monitor concrete filling, hydration heat, compressive strength. From construction sites in Sang-am dong and University of Seo-kang, long-term behaviors could be effectively predicted in terms of ACI 209 material model considering elastic deformation, shrinkage and creep.

An Experimental Study on the Behaviours of Hollow CFT Column Subjected to Axial Load (중공 콘크리트충전 각형강관 기둥의 거동에 관한 연구 (I. 중심 압축실험))

  • Kim, Cheol-Hwan;Kim, Jong-Kil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.69-76
    • /
    • 2006
  • Concrete Filled Steel Tube (CFT) system is advantageous because it increases the load-carrying capacity without increasing the size of column. However CFT system has many benefits, it is not applied to field generally because of its heavyweight and difficulty of concrete filling method. As a solution to these problems, we proposed concrete filled steel tube column with hollow made by factory-manufactured PC method. The hollow concrete filled steel tube system is expected to obtain the high strength and high capacity of deformation despite it is a lightweight. This study deals with mechanical properties, strength and deformation, of hollow concrete filled steel tube subjected to axial load. 9 specimens were tested to examine mechanical properties closely, and the following results were obtained: All specimens basically showed higher initial rigidity and maximum strength with increased concrete filling rate. And most specimens showed almost linear behavior until around 80% of maximum strength regardless of filling rate, it is estimated that the elastic range is up to a half of the maximum strength which is the yield strength level.

  • PDF

A Study on Properties of Mechanical Behaviors of Concrete Confined by Circular Steel Tube (원형강관으로 구속된 콘크리트의 역학적 거동 특성에 관한 연구)

  • 박정민;김화중
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.199-210
    • /
    • 1995
  • We could say that the concrete filled steel tube structure is superior in the vlew of various structure properties as to promote improvement of structural capacity to dtmonstrate heterogeneous material properties interdependently. The compressive strength is increased by putting to tri axial stress because lateral expansion of concrete 1s confined by the steel tube, when concrete conflned by steel tube fall under centric axial load. Also, it have an advantage that decreasr of load carrying capacity 1s small, not occuring section deficiency due to protect falling piienornonon by co~nprrssion fallurc of concrete. So this study investigated for structural behaviors yroprrtiex of concwir. confined by steel tube throughout a series of experlmerit with kcy parxncter, such as diameter-to-thickness(D / t) ratio, strength of concrete as a study on properties of structural behaviors of confined concrete confined by circular steel tube( tri axial stress). Frorn the expcrment results, the obtained results, are surnrnarised as foliow. (1) The restraint effect of concrete by steel tube was presented significantly as the D /t ratio of steel tube and the strength of filled concrete decrease, and the confined concrete by circular steel tube was increased respectively twice as much as 4-7 in deformation capacity at the ultimate strength ,compared with those of non-confined concrete, so expected to increase flexible effect of concrete. (2) The emprical formula to predict the ultimate capacity of confined concrete by steel tube and concrete filled steel tube column using restraint coefficient of concrete were proposed.

Evaluation of the Flexural Behavior of Composite Beam with Tunnel Steel Rib Support Using Circular Concrete Filled Steel Tube (콘크리트 충전 원형 강관을 이용한 터널강지보 합성부재의 휨거동 평가)

  • Ma, Sang Joon;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.353-359
    • /
    • 2017
  • The purpose of this study is to evaluate the strength and behavior of the composite member in case of concrete filled steel tube embedded in concrete for application concrete filled steel tube to steel rib support in tunnel. A total of six beam specimens were prepared for steel tube in-filled with plain concrete and aerated concrete, and static bending tests were performed. As a result, the member of concrete steel tube embedded with plain concrete showed higher strength than those with aerated concrete. However, it was found that the flexural strength of member with reinforcing bar around the steel tube is more influenced by the amount of the reinforcing bar than the type of the filled concrete.

An Experimental Study on the Bond Strengths for Concrete Filled Steel Tube Columns using a Push-Out Test (단순가력실험을 통한 콘크리트충전 강관기둥의 부착응력에 관한 연구)

  • Woo, Hae Sung;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.481-487
    • /
    • 2002
  • Currently, the load transfer's mechanism from a beam to a column has yet to ve clarified in a concrete filled steel tubular (CFT) structure with a connection type of an exterior diaphragm. The loads for each floor are transferred to the concrete core from a steel beam through ha contacted face between an in-filled concrete and the interior surface of a steel tube. Thus, a Push-Out test was performed to investigate the load transfer mechanism. A total of 30 samples were tested to confirm the bond stress and/or axial load distribution between a steel tube and in-filled concrete for CFT column. The main parameters considered for this study included concrete type, steel tube-shape/length, and the effect of a weld joint wit ha backing strip for a column splice. Test results were summarized to confirm load transfer behavior between a concrete and steel tube for each experimental parameter, using the analytical approach to verify experimental results.

Investigation for Detecting the Poorly Grouting of a PC Girder Bridge (충격탄성파법을 이용한 PC형교의 그라우트 미충전부 탐사측정)

  • Lee, Sang-Hun;Sagara, Yuzo;Endo, Takao
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.40.2-40.2
    • /
    • 2010
  • PC형교에서는 거더의 복부와 하부에 PC강선을 수용하는 쉬이스가 배치되어 있어며, 그 내부에 그라우트를 충전함으로서 PC강선과 콘크리트를 간접적으로 부착시킨다. 그러나, 이 충전이 불충분하면, 쉬이스 내부에 물이 침투하여 PC강선이 부식하거나, 동결융해 작용에 의한 쉬이스 배치 위치에서의 횡방향 균열이 발생한다. 본 연구에서는, 충격탄성파법을 이용하여 실구조물에 대한 그라우트 미충전부 탐사측정을 실시하고, 미충전부로 보여지는 장소를 천공으로 확인함으로서 본 방법의 실용성에 대하여 보고한다.

  • PDF

An Experimental Study on Simple Tension Connections for Square CFT Column to Beam Using Internal Plate with Holes (내부유공판을 사용한 각형 CFT 기둥-보 단순인장 접합부의 실험적 연구)

  • Lee, Seong Hui;Jung, Hun Mo;Yang, Il Seung;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.575-583
    • /
    • 2009
  • As the height of buildings rises, new structural systems are being applied other than theexisting S, RC, and SRC to decrease the weight of buildings and to make their construction more efficient, CFT structureshad been applied in many building construction projects due to their superior structural performance and construction efficiency. CFT structures need a diaphragm to harmoniously transmit the beam flange load to the column and the opponent beam in connections. Especially, on the right and left sides of the column other beams are connected, The establishment of a diaphragm for the lower part flange load delivery of the beam and guarantee for concrete filing capacity difficulty have (What does this mean?). In this paper, connection details are proposed in the form of a welded vertical plate with a circular hole on the CFT column's interior to harmoniously transmit the lower-part beam flange load to the column and the opponent beam. Thesediaphragm details use the concrete anchor effect in the beam flange load delivery, with the concrete-filled CFT column interior piercing the hole of the perforated plate, and a perforated board is established vertically to improve the concrete filling capacity. To analyze the structural performance of the proposed connection details, five simple tension specimens were made with the following parameters: with our without vertical and horizontal perforated plates, shear hole number, concrete filled or not, thickness of the perforated plate, etc. Then experimental tests were performed on these specimens.

Non-linear Behavior of New Type Girder Filled by High-Strength Concrete (신형식 거더의 고강도 콘크리트 적용 시 비선형 거동 분석)

  • Choi, Sung-Woo;Lee, Hak;Kong, Jung-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.217-220
    • /
    • 2008
  • Recently, many studies about a high-strength concrete and composite structures are being progressed to get the more economic and stable result in the construction of structure all over the world. One of those studies is about CFTA(Concrete Filled and Tied Steel Tubular Arch) girder that applies an arch structure and a pre-stressed structure to CFT(Concrete Filled Steel Tubular) Structure which is filled with a concrete and improve the stiffness and strength of the structure by the confinement effect of fillers to maximize the efficiency of structure and economic. In this study, non-linear behavior of CFTA girders filled with a general concrete and the high-strength concrete respectively were analyzed by using ABAQUS 6.5-1 and results were compared.

  • PDF