• Title/Summary/Keyword: 내부마찰각계수

Search Result 96, Processing Time 0.023 seconds

A Study on the Estimation and Application of Failure Coefficients of Rock (암석의 파괴조건계수 평가 및 적용성에 관한 연구)

  • 장명환;양형식
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.103-116
    • /
    • 1998
  • To estimate pure shear strength, 150 sets of triaxial test data were analyzed. The proportional coefficient of shear strength($I_c$) at zero normal stress was nonlinearly decreased as failure coefficient m increases, while the internal friction $\phi_0$ at zero normal stress was nonlinearly increased. The ratio of shear strength $(c/\phi_0)$was inversely proportional to the ratio of the internal friction angles$(\phi/phi_0)$ The shear strength decreased as m increased, while internal friction angle increased. And uniaxial strength was proportional to $c,\phi$ Regression analysis showed that shear strength strongly affects m and $\sigma_c$ The proportional coefficient of shear strength was nonlinearly increased with RMR, while the internal friction angle $(\phi}$was linearly decreased.

  • PDF

Strength Parameters of Basalts in Jeju Island according to Rock Failure Criterions (암반의 파괴기준에 따른 제주도 현무암의 강도정수)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.3
    • /
    • pp.15-27
    • /
    • 2016
  • In this study, a series of triaxial compressive strength tests were conducted for basaltic intact rocks sampled in the northeastern onshore and offshore, southeastern offshore and northwestern offshore of Jeju Island. Hoek-Brown constants $m_i$ were estimated from the results of the triaxial compression tests, and the properties of the Hoek-Brown constants $m_i$ were investigated. In addition, the cohesion and internal friction angle, strength parameters of Mohr-Coulomb failure criterion, obtained from the results of the triaxial compression tests were compared and analyzed with those estimated from Hoek-Brown failure criterion, respectively. As results, it was found that the Hoek-Brown constant $m_i$ is deeply related to the internal friction angle. As the internal friction grows, the Hoek-Brown constant $m_i$ increases exponentially. The cohesions estimated from the Hoek-Brown failure criterion, on average, are approximately 24% higher than those obtained from the Mohr-Coulomb failure criterion. The internal friction angles estimated from the Hoek-Brown failure criterion are similar to those obtained from the Mohr-Coulomb failure criterion.

Shear Resistance of Sandy Soils Depending on Particle Shape (모래 입자의 형상과 내부마찰각의 상관관계에 관한 연구)

  • Suh, Hyoung Suk;Jo, Yumin;Yun, Tae Sup;Kim, Kwang Yeom
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.41-48
    • /
    • 2016
  • This study presents the correlations between quantified particle shape parameters and internal friction angles for nine sand specimens including six natural sands and three crushed sands. Specimens are subjected to 3D X-ray computed tomographic imaging and their particles are segmented through the aid of image processing techniques. Shapes of segmented particles are then quantified through two shape parameters such as sphericity and elongation. The direct shear apparatus enables us to measure peak and critical state friction angles of sand specimens of distinct relative densities. The gathered data show that decreasing sphericity and increasing elongation cause increases in peak and critical state friction angle with similar gradients.

Characteristics of Shear Strength Parameters of Various Soils by Direct Shear Test (직접전단시험에 의한 다양한 시료의 전단강도 특성)

  • Park, Choonsik;Jeong, Jeonggeun
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.584-595
    • /
    • 2018
  • This study conducted direct shear test on about 290 sorts of materials such as sandy soil, clayey soil and gravely soil to present proper standard on shear strength of soil. Shear strength of soil in large scale tends to show that angle of internal friction increases as sand contents grow and it ranges $23.5^{\circ}{\sim}34.9^{\circ}C$ with cohesion of 2.0 kPa~15.7 kPa. Elastic modulus was visibly distinct by load, and which increased approximately 80% as vertical load grows. Angle of internal friction arranging $15.0^{\circ}{\sim}28.6^{\circ}$ on clayey soil decreased as clay contents rises and cohesion increase in regular scale. Elastic modulus tends to increase initial elastic modulus with almost same growing rate. While angle of internal friction on gravely soil indicates $29.9^{\circ}{\sim}36.7^{\circ}$ which hardly shows distinctive features. According to test in detail, cohesion of SW (well-graded sand), SP (poorly-graded sand), SC (clayey sand) and SM (silty sand) indicates value by 94%, 78% and 59% comparing to SC, SW and SP respectively. Angle of internal friction of ML (low-liquid limit silt) and CL (low-liquid limit clay) appears almost same features, and MH (high-liquid limit silt) despite of 88% value of ML. Cohesion among them varies with similar growing rate.

Shear Strength Estimation of Clean Sands via Shear Wave Velocity (전단파 속도를 통한 모래의 전단강도 예측)

  • Yoo, Jin-Kwon;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.17-27
    • /
    • 2015
  • We perform a series of experimental tests to evaluate whether the shear strength of clean sands can be reliably predicted from shear wave velocity. Isotropic drained triaxial tests on clean sands reconstituted at different relative densities are performed to measure the shear strength and bender elements are used to measure the shear wave velocity. Laboratory tests reveal that a correlation between shear wave velocity, void ratio, and confining pressure can be made. The correlation can be used to determine the void ratio from measured shear wave velocity, from which the shear strength is predicted. We also show that a unique relationship exists between maximum shear modulus and effective axial stress at failure. The accuracy of the equation can be enhanced by including the normalized confining pressure in the equation. Comparisons between measured and predicted effective friction angle demonstrate that the proposed equation can accurately predict the internal friction angle of granular soils, accounting for the effect of the relative density, from shear wave velocity.

Dynamic Interface Friction Behavior Between Soils and Construction Material(Steel) (조립토와 건설재료(steel)사이의 동마찰계수)

  • Kim, Dae-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.461-468
    • /
    • 2001
  • 지진등에 의해 유발된 동 하중에 의한 지반-구조물 계의 응답은 지반-구조물사이의 경계에서의 마찰특성과 미끄러짐에 의해 크게 영향을 받게 된다 본 논문에서는 진동대(Shaking table)를 이용하여 조립토와 건설재료(Steel)의 경계에서 지반으로부터 지중구조물에 전달되는 전단응력 의 전달정도를 파악하기 위한 실험을 실시하였다. 본 실험에서 설정한 미끌어짐속도 범위내에서는 미끄러짐속도 변화에 따른 조립토와 건설재료(Steel)사이의 동마찰계수의 변화가 작다는 사실이 관찰되었다. 그리고 조립토의 평균유효입경의 변화가 동마찰계수에 미치는 영향도 함께 조사되었다. 또한 이 동마찰계수를 같은 조립토에 대한 평면변형률시험을 통해 얻어진 최대내부마찰각으로부터 구한 마찰계수와 비교하여 정량화하였다.

  • PDF

Dynamic Friction Behavior of Interfaces Between Granular Materials and Steel (조립토와 건설재료(steel)사이의 동마찰계수)

  • 김대상
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.33-39
    • /
    • 2001
  • 지진 등에 의해 유발된 동 하중에 의한 지반-구조물 계의 응답은 지반-구조물사이의 경계에서의 마찰특성과 미끄러짐에 의해 크게 영향을 받게 된다. 본 논문에서는 진동대(Shaking table)를 이용하여 조립토와 건설재료(steel)와의 경계에서 지반으로부터 지중구조물에 전달되는 전단응력의 전달정도를 파악하기 위한 실험을 실시하였다. 본 실험에서 설정한 미끄러짐속도 범위 내에서는 미끄러짐속도 변화에 따른 조립토와 건설재료(steel) 사이의 동마찰계수의 변화가 작다는 사실이 관찰되었다. 그리고 조립토의 평균유효입경의 변화가 동마찰계수에 미치는 영향도 함께 조사되었으며, 이 동마찰계수를 같은 조립토에 대한 평면변형률시험을 통해 얻어진 최대내부마찰각으로부터 구한 마찰계수와 비교하여 정량화하였다.

  • PDF

A Study on Developed Earth Pressures behind Retaining Walls Built Close to Rock Faces (암 근처에 설치되는 옹벽의 발생토압에 관한 연구)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.6 no.4
    • /
    • pp.7-18
    • /
    • 1990
  • To deal with the case of a rigid retaining wall built close to a stable rock face with cohesionless backfill, analytical solution methods Proposed by Spangler- Handy and Sokolovskii are modified. The modified solution methods, taking into account different friction angles along the wall and the rock face, can estimate the developed static or dynamic horizontal earth pressures behind vertical retaining walls experiencing various types of outward wall movements. The range of application of each proposed method, which is represented by the ratio of the distance between the wall and the rock face to the height of the wall, is compared with each other and also is examined for different wall friction angles as well as soil friction angles. Further, the result predicted by the modified Spangler - Handy solution method is compared with that from the experimental model test on sand. The comparison shows in general good agreements at various stages of retaining wall rotation about its toe. Finally results of analytical parametric study, together with the design charts, are presented to demonstrate the effects of wall friction angles and horizontal acceleration coefficients.

  • PDF

Analysis of Bearing Capacity for Shallow Foundation Considering the Effect of Roughness of Base (기초저면(基礎底面)의 조도(粗度)의 영향을 고려한 얕은기초(基礎)의 지지력(支持力) 해석(解析))

  • Hwang, Jung Kyu;Shin, Dong Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.167-177
    • /
    • 1992
  • This study analyses theoretically the bearing capacity of shallow foundation, considering the effect of roughness of base. The new bearing capacity factors based on the concept of limit equlibrium are succesfully derived. The simplified formula corresponding to the newly derived expressions are developed as well. The results of the present study are comparable to the conventional theories i.e., Terzaghi's, Meyerhofs, Vesic's and Yamaguchi's. In conclusion it is recommended that the upper limit of friction angle of soil be ${\varphi}=40^{\circ}$, and the angle of base friction be adquetely used with various ranges of ${\varphi}$ for safe designs and constructions.

  • PDF

Computation of Passive Earth Pressure Coefficient considering Logarithmic Spiral Arc (대수나선 파괴면을 고려한 수동토압계수의 계산)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.425-433
    • /
    • 2019
  • In this study, a simple method of calculating the passive earth pressure coefficient, which is based on the limit equilibrium method, was proposed and the calculated earth pressure coefficients were compared with those of several researchers. The angle of the linear failure surface, which is combined with the logarithmic spiral arc, to the failure surfaces of the passive zone was derived and the whole passive thrust acting on the Rankine passive zone was considered in the proposed method instead of considering the horizontal component of passive thrust. The variations of the passive earth pressure coefficients of the proposed method showed the same tendency as that of the Coulomb's passive earth pressure coefficients with an inclined angle of backfill and internal friction angle. The magnitude of passive earth pressure coefficients of the proposed method were smaller than those of the Coulomb in almost all cases. A comparison of the passive earth pressure coefficients with the wall friction angle revealed the passive earth pressure coefficients of the proposed method to be smaller than those of the Coulomb and the differences between the two values increased with increasing internal friction angle and wall friction angle. A comparison of the passive earth pressure coefficients of the proposed method with those of the existing researchers for the considered internal friction angles of $25^{\circ}$, $30^{\circ}$, $35^{\circ}$, and $40^{\circ}$ and three wall friction angles revealed the maximum percentage differences for the Kerisel and Absi method, Soubra method, Lancellotta method, $Ant\tilde{a}o$ et al. method, Kame method, and Reddy et al. method to be 4.8%, 3.8%, 31.1%, 4.0%, 20.6%, and 12.8% respectively. The passive earth pressure coefficient and existing pressures were similar in all cases.