• Title/Summary/Keyword: 내구성 향상

Search Result 902, Processing Time 0.027 seconds

Effect of Brij98 on Durability of Silver Polymer Electrolyte Membranes for Facilitated Olefin Transport (올레핀 촉진수송용 고분자 전해질막의 내구성에 대한 Brij98의 효과)

  • Kang, Yong-Soo;Kim, Jong-Hak;Park, Bye-Hun;Won, Jong-Ok
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.294-302
    • /
    • 2006
  • Silver polymer electrolytes are very promising membrane materials for the separation of olefin/paraffn mixtures. Olefin molecules are known to be transported through reversible complex formation with silver ions entrapped iii polymer matrix. However, they have poor long-term stability, which is very important fur the industrial application; the selectivity through the membrane decreases gradually with time mostly due to the reduction of silver ions ($Ag^+$) into silver nanoparticles ($Ag^0$). In this study, the stability of silver polymer electrolyte was investigated for poly(vinyl pyrrolidone) (PVP) and $AgBF_4$ system containing a surfactant, i.e. $C_{18}H_{35}(OCH_2CH_2)_{20}OH$ (Brij98) as a stabilizer. The reduction behavior of silver ions to silver nanoparticles in PVP was also investigated by atomic force microscopy (AFM) and UV-visible spectroscopy. It was found that the growth of silver nanoparticles was slower and selectivity of polymer electrolyte for propylene in propylene/propane was maintained longer time when Brij98 was added as a stabilizer.

Recycling of Coal Ash and Related Environmental Issues in Australia (호주의 석탄재 재활용 사례와 석탄재 재활용과 관련된 환경 문제)

  • Park, Jin Hee;Ji, Sang-Woo;Shin, Hee-Young;Jo, Hwanju;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2019
  • Coal combustion products are generated during coal combustion and can be grouped into fly ash and bottom ash depending on collection methods. Fly ash and bottom ash can be recycled for various purposes based on their characteristics. Australia is the fourth largest coal production country in the world and reuses coal ash as cement, concrete, mine filler, and agricultural soil amendment. When fly ash is used as a supplement for cement and concrete, strength of the cement and the durability of the concrete can be improved. Use of coal combustion product for mine backfill stabilizes underground mine voids and stores a large amount of coal ash in the voids. Because of alkalinity of coal combustion products, it can neutralize acid mine drainage when used for mine backfill. In addition, it can be used as an agricultural soil amendment to improve acidity and physical properties of the soil and to supply plant nutrients. Recycling of fly ash in Australia will be further expanded because of its low trace element contents that can be toxic to plants and low radioactive element contents existing within soil background concentrations. The characteristics of coal combustion products are related to the characteristics of the coal used for combustion, and since Korea imports coal from Australia, Korean coal combustion products also can be recycled for various purposes.

Concrete-Panel Retaining Wall anti-crack sleeve inserted (균열방지 슬리브가 매설된 패널식 옹벽)

  • Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.345-349
    • /
    • 2019
  • In Korea, the mountainous area occupies more than 70% of the whole country, cutting of earth slope that cuts a part of the ground surface is widely used when building infrastructures such as road, railroad, and industrial complex construction. In recent years, regulations on environmental damage have become more strict, and various methods have been developed and applied. Among them, Concrete-Panel Retaining Wall technique is actively applied. Concrete-Panel Retaining Wall is a method to resist horizontal earth pressure by forming a wall by attaching a precast retaining wall to the front of the support material and increasing the shear strength of the disk through reinforcement of the support material. Soil nailing, earth bolt, and ground anchor are used as support material. Among them, ground anchor is a more aggressive reinforcement type that introduces tensile load in advance to the steel wire, and a large concentrated load acts on the front panel. This concentrated load is a factor that creates cracks in the concrete panel and reduces the durability of the retaining wall itself. In this study, steel pipe sleeves and reinforcements were purchased at the anchorage of the panel to prevent cracks, and by applying bumpy shear keys to the end of the panel, the weakness of the individual behavior of the existing grout anchors was improved. The problem of degraded landscape by exposure to front concrete of retaining wall and protrusion of anchorage was solved by the production of natural stone patterns and the construction of sections that do not protrude the anchorage. In order to verify the effectiveness of anti-crack sleeves and reinforcements used in the null, indoor testing and three-dimensional numerical analysis have been performed, and the use of steel pipe sleeves and reinforcements has demonstrated the overall strength increase and crack suppression effect of panels.

Analysis of grout injection distance in single rock joint (단일절리 암반에서 그라우팅 주입거리 분석)

  • Ji-Yeong Kim;Jo-Hyun Weon;Jong-Won Lee;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.541-554
    • /
    • 2023
  • The utilization of underground spaces in relation to tunnels and energy/waste storage is on the rise. To ensure the stability of underground spaces, it is crucial to reinforce rock fractures and discontinuities. Discontinuities, such as joints, can weaken the strength of the rock and lead to groundwater inflow into underground spaces. In order to enhance the strength and stability of the area around these discontinuities, rock grouting techniques are employed. However, during rock grouting, it is impossible to visually confirm whether the grouting material is being smoothly injected as intended. Without proper injection, the expected increases in strength, durability, and degree of consolidation may not be achieved. Therefore, it is necessary to predict in advance whether the grouting material is being injected as designed. In this study, we aimed to assess the injection performance based on injection variables such as the water/cement mixture ratio, injection pressure, and injection flow using UDEC (Universal Distinct Element Code) numerical program. Additionally, numerical results were validated by the lab experiment. The results of this study are expected to help optimize variables such as injection material properties, injection time, and pump pressure in the grouting design in the field.

Modification of EPDM Rubbers for Enhancement of Environmental Durability of Aerator Membrane (산기관용 멤브레인 고무판의 환경내구성 향상을 위한 EPDM 고무의 개질)

  • Ahn, Won-Sool
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.107-112
    • /
    • 2008
  • A study on the enhancement of environmental durability of EPDM rubber materials for the aerator membrane was performed using a butyl rubber as a modifier. A conventional EPDM rubber formulation was evaluated as having about 26.0 wt% or more oil content from the chloroform immersion test. These oils would be gradually and continuously deleted from the aerator membrane when directly exposed to a waste-water or chemically corrosive fluids, making the membrane less flexible and the performance worse. To improve this, a butyl rubber (IIR) was utilized as the modifier for a low-ENB type of EPDM rubber formulation with low-oil content. The environmental durability of the IIR-modified EPDM rubber material was expected to be greatly enhanced compared to the conventional one. However, the mechanical and performance properties such as elongation, tensile strength, and air bubble size, etc. were still maintained as good as in the conventional one. Furthermore, TGA analysis of the IIR-modified EPDM material showed that there would be partially compatible between IIR and EPDM. It also showed that the initial degradation temperature of the IIR-modified EPDM could be somewhat increased, exhibiting the enhanced compatibility among the components and, thereby, more enhanced environmental durability.

Lightweight Composite Electronics Housing Design of Modular Type for Space Applications (우주용 모듈화 형태의 경량 복합재료 전자장비 하우징 설계)

  • Jang, Tae-Seong;Cho, Hee-Keun;Seo, Hyun-Suk;Kim, Won-Seock;Rhee, Ju-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1209-1216
    • /
    • 2010
  • This paper dealt with an alternative for maximizing mass savings in spacecraft design by replacing conventional aluminum alloy housing used for various spacecraft avionics by composite materials. Key requirements were defined for the purpose of composite housing design with sufficient durability and various functionalities as well as more lightweight characteristics as compared with aluminum alloy widely-used for conventional electronics housing. Conceptual design was also carried out for manufacturing modular, lightweight composite electronic housing equipped with high thermal and electrical conductivities, EMI protection, and radiation shielding characteristics as well as excellent structural performance; feasibility of enhancing mass savings in spacecraft design was presented.

Design of Management Structure Measuring Integrated Monitoring System Based on Mobile Cloud (모바일 클라우드 기반 구조물 유지관리계측 통합모니터링시스템 설계)

  • Min, Byung-Won;Oh, Yong-Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.9-10
    • /
    • 2014
  • 구조물 계측 및 유지관리에 포함되는 계측센서, 계측장비, 전산장비, 통신장비, 소프트웨어 등은 구조물 수명에 비해 비교적 짧은 내구수명을 가지기 때문에 공용 기간 중 지속적으로 교체/변경이 요구되고 있으며, 소프트웨어 또한 분석기술의 향상과 정보통신기술의 발전 등을 계속해서 반영해야 하므로 일정기간마다 모니터링시스템에 대한 업그레이드 작업이 요구되고 있다. 그러나, 기존에 개발된 시스템은 구조물 관리자에 의한 일부 하드웨어와 분석 알고리즘의 변경이나 업그레이드가 쉽지 않고 모니터링 시스템의 구축에 활용된 프로그램 내부구조 파악이 어려워 원 개발자의 지속적인 지원에 의존해야한다. 본 논문에서 제안된 모바일 클라우드 기반 구조물 유지관리계측 통합모니터링시스템에서는 구조계가 평상시나 특수한 상황에서 장 단기적으로 어떠한 거동을 보이고 있는지를 분석하고, 이를 토대로 향후의 거동이 어떻게 될지 예측하기 위해서 확률과 통계기법의 적용을 통해서 구할 수 있는 새로운 데이터 분석 기법을 적용하였으며, 모바일 클라우드 기반으로 데이터를 수집하고, 많은 데이터 양 및 데이터 신뢰도 수준에서 건전성평가를 할 수 있는 새로운 개념의 구조물 거동계측 통합모니터링시스템 설계로 기존의 단점을 해결할 수 있도록 개선하였다.

  • PDF

Giant Magnetoresistance and Applications (거대자기저항 및 응용)

  • Lee, Seong-Rae
    • Ceramist
    • /
    • v.2 no.4
    • /
    • pp.35-46
    • /
    • 1999
  • GMR 재료의 응용은 매우 광범위하며 크게 세 분야로 대별할 수 있다. 첫째는 자기 재생 헤드로서 $10Gbit/in^2$ 이상의 고밀도 자기기록 기술에서는 필수 불가결한 재료이다. 둘째는 다양한 분야에 응용될 고감도 자기센서 분야이며, 셋째는 집접화된 자기저항메모리(MRAM) 분야이다. GMR 센서를 사용한 자기헤드는 이미 시판되고 있고 기존의 AMR 재료인 퍼멀로이에 비하여 3~20배 이상으로 신호준위가 크고 사용온도 범위에서 선형성 및 열적안정성도 우수한 것으로 보고되고 있다. MRAM의 경우에는 스핀밸브 GMR 및 TMR 소자를 사용한 연구가 한창 진행중이다. GMR 현상은 발견 된지 고작 10년 밖에 되지 않았으나 GMR 자기센서는 이미 상업적으로 개발되어 응용되고 있다. 이러한 실질적인 응용에 유리한 고지를 선점하고 있는 것은 이방성결합형 스핀밸브 다층박막 구조로서 그 내구성과 특성 향상을 위한 연구가 다양하게 시도되고 있다. GMR현상의 발견은 자성재료분야 연구 및 응용에 있어 새로운 전기를 마련하였으며 특히 자성과 이동현상이 연계된 분야로서 소위 "Magneto-electronics" 또는 "Spintronics" 라는 [51] 새로운 미래기술의 장이 열리고 있다. 현재의 반도체 중심의 "Microelectronics" 기술에서는 전자와 전자공공을 이용하는 기술이라면 "Magneto-electronics" 기술에서는 스핀${\uparrow}$ 및 스핀${\downarrow}$의 두 종류의 전자를 이용하게 된다. 자성체와 도체를 접목한 스핀 트랜지스터 또는 자성체와 반도체를 접목한 스핀-polarized FET(field effect transistor) 등의 새로운 개념의 magnetoelectronics 소자가 창출되고 있다. 따라서 자기이동 현상의 기초 연구, 재료 측면의 연구 및 헤드, MRAM, 센서 등의 응용기술연구가 국내에서 활발하게 이루어져 21세기 새로운 자성전자(magneto-electronics)소자 응용에 경쟁력을 키워야 할 것이다.

  • PDF

Fundamental Evaluation and Hydration Heat Analysis of Low Heat Concrete with Premixed Cement (저발열형 Premixed Cement를 사용한 콘크리트의 기초물성 평가 및 수화열 해석에 관한 연구)

  • Yoon, Ji-Hyun;Jeon, Joong-Kyu;Jeon, Chan-Ki;Kim, Ki-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • This study carried out to evaluate the hydration heat analysis and fundamental characteristics such as air content, slump, compressive strength and dry shrinkage according to concrete with premixed cement, ternary concrete and OPC concrete for using concrete with premixed cement. The results of experiment are founded that concrete with premixed cement have sufficient performances such as workability, compressive strength and dry shrinkage. Also, the results of hydration heat analysis are founded that concrete with premixed cement have more performance than ternary concrete and OPC concrete at a point of view for the quality control such as thermal crack reducing and economic benefit. Therefore, it is desirable that concrete with premixed cement should be used to rise durability performance and convenience of maintenance.

A Evaluation on the Field Application of Ductile Fiber Reinforced Cement Composites (고인성 섬유보강 시멘트 복합체의 현장 적용성 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Park, Jung-Jun;Kang, Su-Tae;Kim, Sung-Wook;Park, Sung-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.941-944
    • /
    • 2008
  • Various ductile fiber reinforced cement composite(DFRCC) including large quantities of PVA fiber or steel fiber have been developed recently and studies to find applications in diverse domains are currently conducted actively. Regard to economical efficiency, DFRCC becomes competitive when applied as special elements and repair material with small quantities rather than the casting of large volume for the main body of structures in field. The authors have developed FRP-DFRCC composite slab for bridges and a wet spraying repair technique using DFRCC. In case of the application on FRP-DFRCC composite slab, it was found that there was no problems the structure and durability of it after passed 3 months. And in case of the application on the application of the deteriorated sewage box that passed 20 years, it was found that there was no difference the repair performance between domestic PVA fiber and the Japan. Therefore, DFRCC using PVA fiber, the concrete structures can be increased to performance and secured the economical efficiency.

  • PDF