• Title/Summary/Keyword: 날개끝 속도비

Search Result 16, Processing Time 0.023 seconds

Optimal Rotor Blade Design for Tidal In-stream Energy (조류발전용 로터 블레이드의 최적 형상 설계)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • Marine current energy is one of the most interesting renewable and clean energy resources that have been less exploited. Especially, Korea has worldwide outstanding tidal current energy resources and it is highly required to develop tidal in-stream energy conversion system in coastal area. The objective of study is to investigate harnessing techniques of tidal current energy and to design the a 100 kW horizontal axis tidal turbine using blade element momentum theory with Prandtl's tip loss factor for optimal design procedures. In addition, Influence of Prandtl's tip loss factor at local blade positions as a function of tip speed ratio was studied, and the analysed results showed that power coefficient of designed rotor blade using NACA 63812 was 0.49 at rated tip speed ratio.

Study on Power Measurement and Comparison of Marine Current Turbine in a Towing Tank (예인수조를 이용한 조류발전 터빈의 동력 계측 및 비교 연구)

  • Do, In-Rok;Kim, Moon-Chan;Lee, Seung-Ki;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.230-238
    • /
    • 2011
  • The experimental study for the performances of 100 kW marine current turbines (Horizontal Axis Turbine) has been conducted with three cases of 700 mm diameter model in PNU 100 m towing tank. Three cases of impeller have been designed according to the variation of section configuration and tip shape. The model tests have been carried out at different speed of revolution to find out the scale effect (Reynolds number effect). The designed rake impeller was the best among them in the efficiency point of view especially at high Tip Speed Ratio (TSR). The present study is expected to be extended to conduct at high reynolds number as well as the computational study for the validation.

A study on the bottom trawl gear by the trial of a stern trawler-II -On the net shape of a bottom trawl gear- (실선 시험에 의한 저층 트롤 어구에 관한 연구-II -어구의 수중 형태에 관하여-)

  • 조봉곤;고광수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.281-286
    • /
    • 2000
  • To analyze the shape of the net mouth of bottom trawl which is composed with 6 seams net, the field experiment was carried out on the sea near Kokunsan Is, Western sea of Korea. The distance of otter board, net height, trawl speed and resistance of the fishing gear were respectively measured according to the change of warp length and towing speed. The results obtained are summarized as follows : 1. The spreading distance of the otter board has been increased straightly according to the increment of towing speed and warp length. The rate of increase by the warp length has been greatly higher than the rate of increase by the towing speed. The total variation of the spreading distance was 57.0-82.8m, and it was occupied 43-62% of the hand rope, net pendent and the length of nets. 2. The height of net mouth has been decreased straightly according to the increment of towing speed and warp length. The rate of decrease by the towing speed has been greatly higher than the decrease rate of the warp length. The total variation of the net height was 3.1-4.0m. 3. When the distance of wing tip is increased, the height of net mouth is decreased, but the ratio of the decreasing rate of the height of net mouth for the increasing rate of the distance of wing tip was gradually low according to the increment of warp length. 4. The ratio of the distance of both wing tip for the height of net mouth has been increased gradually according to the increment of towing speed and warp length, and the total variation of the ratio was 4.17-7.81 times.

  • PDF

Analysis of End-Plated Propellers by Panel Method (패널법에 의한 날개끝판부착 프로펠러의 해석)

  • C.S. Lee;I.S. Moon;Y.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.55-63
    • /
    • 1995
  • This paper describes the procedure to analyze the performance of the end-plated propeller(EPP) by a boundary integral method. The screw blade(SB) and end-plate(EP) are represented by a set of quadrilateral panels, where the source and normal dipole of uniform strength are distributed. The perturbation velocity potential, being the only unknown via the potential-based formulation, is determined by satisfying the flow tangency condition on the blade and the end-plate at the same time. The Kutta condition is satisfied through an iterative process by requiring the null pressure jump across the upper and lower sides of the trailing edges of both the SH and the EP. Sample calculations indicate that the EP increases the loading near the tip of the SB while spreading the trailing vortices along the trailing edge of the EP, thus avoiding the strong tip-vortex formation. Predicted performance of the EPP shows good correlations with the experimental results. The method is therefore considered applicable in designing and analyzing the EPP which may be an alternative for energy-saving propulsive devices.

  • PDF

Study on the Anchovy Boat Seine - II - On The Hydrodynamic Resistance and Performance of Patti-net (기선권현망의 연구 II - 파치망의 유체저항과 그물꼴에 관하여 -)

  • Lee, Byoung-Gee;Su, Young-Tae;Han, Hi-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.63-68
    • /
    • 1978
  • A boat seine has been used as a major fishing gear for catching anchovy (Engraulis japonica) in the southern coastal waters of Korea since the 1920s. Since the 1950s some improvement from the original seine has been made; powered boats equipped with net hauler has been used instead of rowing boats with hand-driven capstan, and the seining method has been changed into the trawling method. But even now, there are many problems to be solved in the view point of decreasing man power without decreasing catching efficiency. For the purpose, patti-net has been introduced from Japan and experimented on the commercial base since 1972, and it was known that the patti-net could be operated with man power as half as needed in the coventional net, but catching efficiency was not so desirable. Therefore, the study on the characteristics of it were required. The authors carried out a model experiment with a Qne-twentieth scale model net towed by a powered boat on the sea. The obtained results run as follows: 1. Hydrodynamic resistance of the model net can be explained as $R_p=69.6 V_{I.66}$ $R_h=37 v^2$ where $R_p$ and $R_b$ denote the resistance of the whole gear and the cod end in kg respectively, and v the towing speed in mlsec. 2. Performance of wing and cod end showed no deformation such as observed at the conventional net. 3. The ratio of opening at the entrance of bag net to that of cod end showed about 2: 1. Therefore, when we intend to enlarge the net to be able to operate in the deep fishing ground, the cod end should be enlarged in the same proportion and increased towing power is needed .. Then, it will be better to increase the ratio for increasing fishing efficiency without increasing towing power.

  • PDF

A Study on the Performance of an 100 kW Class Tidal Current Turbine (100 kW급 조류발전용 터빈의 성능에 관한 연구)

  • Kim, Bu-Gi;Yang, Chang-Jo;Choi, Min-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 2012
  • As the problems of global warming are brought up recently, many skillful solutions for developing new renewable energy are suggested. One of the most remarkable things is ocean energy. Korea has abundant ocean energy resources owing to geographical characteristics surrounded by sea on three sides, thus the technology of commercialization about tidal current power, wave power is demanded. Especially, Tidal energy conversion system is a means of maintaining environment naturally. Tidal current generation is a form to produce electricity by installing rotors, generators to convert a horizontal flow generated by tidal current into rotating movement. According to rotor direction, a tidal current turbine is largely distinguished between horizontal and vertical axis shape. Power capacity depends on the section size crossing a rotor and tidal current speed. We therefore investigated three dimensional flow analysis and performance evaluation using commercial ANSYS-CFX code for an 100 kW class horizontal axis turbine for low water level. Then We also studied three dimensional flow characteristics of a rotating rotor and blade surface streamlines around a rotor. As a result, We found that torque increased with TSR, the maximum torque occurred at TSR 3.77 and torque decreased even though TSR increased. Moreover we could get power coefficient 0.38 at designed flow velocity.

A Study on the Performance of Tidal Turbine by Inflow condition (유입유동에 따른 조류터빈의 성능의 변화)

  • Kim, B.G.;Yang, C.J.;Choi, M.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.154-154
    • /
    • 2012
  • Many suggestions is offered to resolve global warming. Tidal current generation is producing power by switched tidal difference sea water horizontal fluid flow produced by tidal difference using rotor and generator. So, change the angle of inflow condition due to the entrance of efficiency are considered. We therefore investigated three dimensional flow analysis and performance evaluation using commercial ANSYS-CFX code for horizontal axis turbine. Then We also studied three dimensional flow characteristics of a rotating rotor and blade surface streamlines around a rotor. As a result, Cp was highest at TSR 5.5, especially the larger changes in the angle of inflow condition decreased efficiency.

  • PDF

A Study on Three-Dimensional Flow Characteristics and Power Performance of HAWT(Horizontal Axis Wind Turbine) by CFD (CFD를 이용한 풍력발전 터빈의 3차원 유동해석 및 성능평가에 관한 연구)

  • Kim Beom-Seok;Kim Jeong-Hwan;Nam Chung-Do;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.447-450
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine a 500 kW Horizontal Axis Wind Turbine (HAWT) power performance and 3-D rotor flow characteristics, which are compared to calculation data from Delft University. The experimental approach, which has been the main method of investigation, appears to be reaching its limits, the cost increasing relate with the size of wind turbines. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers is considered a very serious contender. We has used the CFD software package CFX-TASCflow as a modeling tool to predict the power performance and 3-D flow characteristics of a wind turbine on the basis of its geometry and operating data. The wind turbine with 40m diameters rotor, it was scaled to compare with the calculation data from delft university. The HAWT, which has eight-rpm variations are investigated respectively. The pitch angle is $+0.5^{\circ}$and wind speed is fixed at 5m/s. The tip speed ratio (TSR) of the HAWT ranging from 2.89 to 9.63.

  • PDF

Aerodynamic Characteristics of an Insect-type Flapping Wings (곤충 모방 플래핑 날개의 공력 특성)

  • Han, Jong-Seob;Chang, Jo-Won;Choi, Hae-Cheon;Kang, In-Mo;Kim, Sun-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.311-314
    • /
    • 2007
  • Aerodynamic characteristics of an insect-type flapping wings were carried out to obtain the design parameters of Micro Hovering Air Vehicle. A pair of wing model was scaled up about 200 times and applied two pairs of 4-bar linkage mechanism to mimic the wing motion of a fruit fly(Drosophila). To verify the Weis-Fogh mechanism, a pair of wings revolved on the 'Delayed Rotation'. Lift and drag were measured in conditions of the Reynolds number based on wing tip velocity of about 1,200 and the maximum angle of attack of 40$40^{\circ}$. Inertia forces of a wing model were also measured by using a 99.98% vacuum chamber and subtracted on measured data in air. In the present study, high lift effect of Weis-Fogh mechanism was appeared in the middle of upstroke motion.

  • PDF

A Study of Performance Estimate and Flow Analysis of the 500 kW Horizontal-Axis Wind Turbine by CFD (CFD에 의한 500kW급 수평축 풍력발전용 터빈의 성능평가 및 유동해석에 관한 연구)

  • Kim, Y.T.;Kim, B.S.;Kim, J.H.;Nam, C.D.;Lee, Y.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.32-39
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine the complex 3-D stall phenomena on the rotor blade and wake distribution of the wind turbine. The flow characteristics of 500kW Horizontal Axis Wind Turbine (HAWT) are compared with the calculated 3-D stall phenomena and wake distribution. We used the CFX-TASCflow to predict flow and power characteristics of the wind turbine. The CFD results are somewhat consistent with the BEM (Blade Element Momentum) results. And, the rotational speed becomes faster, the 3-D stall region becomes smaller. Moreover, the pressure distribution on the pressure side that directly gets the incoming wind grows high as it goes toward the tip of the blade. The pressure distribution on the blade's suction side tells us that the pressure becomes low in the leading edge of the airfoil as it moves from the hub to the tip. However, we are not able to precisely predict on the power coefficient of the rotor blade at the position of generating complex 3-D stall region.