• Title/Summary/Keyword: 난방 도일

Search Result 123, Processing Time 0.03 seconds

Temporal and Spatial Variability of Heating and Cooling Degree-days in South Korea, 1973-2002 (한반도 난${\cdot}$냉방도일의 시공간 분포 특성 변화에 관한 연구)

  • Choi, Youn-Geun
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.5 s.110
    • /
    • pp.584-593
    • /
    • 2005
  • The spatial and temporal variations of heating degree-days (HDDs) and cooling degree-days (CDDs) are closely related with the temperature field. The spatial distribution of 30-year mean HDDs shows that the higher values locates in the northern part of South Korea while the lower values locates in the southern part. The 30-year mean CDDs shows a more randomized distribution than the HDDs. The changing trends of HDDs and CDDs show a different feature: HDDs have a distinct decreasing trend while CDDs have an insignificant change. The decreasing trends of HDDs are consistent over South Korea and most of stations have experienced the statistically significant change. As significant changing areas of HDDs are much broader than those of annual mean temperature, HDDs can be more useful than annual mean temperature to detect the climate change impact on a regional level. In other words, an insignificant change on the mean temperature field can induce the significant change of thermal climatology in a region. The temporal pattern of climatic departure index (CDI) for South Korea HDDs series shows a general decreasing, but a sharp increase during recent years. The drastic decrease of HDDs induces higher CDI indicating larger variability among stations. However, the decrease of South Korea HDDs series cannot totally attribute to the global warming due to urban effects. By the early 1980s, there were no big differences of HDDs between urban and rural series, but later the differences are getting larger. This was expected to be with the intensification of urbanization in South Korea. However, still there is a decreasing trend of HDDs for rural stations.

Effect of Pipes Layout and Flow Velocity on Temperature Distribution in Greenhouses with Hot Water Heating System (방열관의 배치와 관내 유속이 온수난방 온실의 온도분포에 미치는 영향)

  • Shin, Hyun-Ho;Kim, Young-Shik;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.335-341
    • /
    • 2019
  • In order to provide basic data for uniformization of temperature distribution in heating greenhouses, heating experiments were performed in two greenhouses with a hot water heating system. By analyzing heat transfer characteristics and improving pipes layout, measures to reduce the variation of pipe surface temperature and to improve the uniformity were derived. As a result of analyzing the temperature distributions of two different greenhouses and examining the maximum deviation and uniformity, it was found that the temperature deviation of greenhouses with a large amount of hot water flow and a short heating pipe was small and the uniformity was high. And it was confirmed that the temperature deviation was reduced and the uniformity was improved when the circulating fan was operated. The correlation between the surface temperature of the heating pipe and the indoor air temperature was a positive correlation and statistically significant(p<0.01) in both greenhouses. It was confirmed that the indoor temperature distribution in a hot water heating greenhouse was influenced by the surface temperature distribution of heating pipe, and the uniformity of indoor temperature distribution could be improved by arranging the heating pipe to minimize the temperature deviation. Analysis of the heat transfer characteristics of heating pipe showed that the temperature deviation increased as the pipe length became longer and the temperature deviation became smaller as the flow rate in pipe increased. Therefore, it was considered that the temperature distribution and the uniformity of environment in a greenhouse could be improved by arranging the heating pipe to shorten the length and controlling the flow velocity in pipe. In order to control the temperature deviation of one branch pipe within $3^{\circ}C$ in the tube rail type hot water heating system most used in domestic greenhouses, when the flow velocity in the pipe is 0.2, 0.4, 0.6, 0.8, $1.0m{\cdot}s^{-1}$, the length of a heating pipe should be limited to 40, 80, 120, 160, 200m, respectively.

지역난방용 축열조의 소개

  • 이건태
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.30 no.12
    • /
    • pp.35-36
    • /
    • 2001
  • 지역난방 방식에 의한 열공급이 개별적 열이용에 비해 에너지 효율이 높고 환경유해 물질의 배출을 최소화시킬 수 있는 장점으로 인해 집단 거주 지역을 중심으로 이용도가 놓아지고 있다. 따라서, 본 고에서는 지역난방 방식의 주요 설비중의 하나인 축열조의 역할, 운전, 종류 및 설계방법 등을 요약하였다.

  • PDF

Experiment study on Heating Performance of Heat-pump chiller (실외온습도 변화에 따른 히트펌프 칠러의 난방성능에 관한 실험적 연구)

  • Lee, Kwon-Jae;Lee, Sang-Jae;Kim, Jung-Seok;Lee, Soo-Kwang;Park, Kyoung-Man
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1123-1126
    • /
    • 2010
  • 본 연구에서는 외기온습도에 따른 히트펌프 칠러의 난방성능을 조사하고자 하였다. 난방표준 온도조건에서 건구온도 및 습구온도 변화에 따른 히트펌프 칠러의 난방능력과 COP를 획득하기 위하여 항온항습 챔버와 항온수조를 사용하였다. 실험은 건구온도 $7^{\circ}C{\sim}17^{\circ}C$, 상대습도 67%~87%에서 수행하였다. 외기온도가 증가함에 따라 난방능력은 약 27%, COP는 약 28% 증가하였지만, 상대습도 증가에 따른 난방능력과 COP의 변화는 거의 없었다. 따라서 난방운전 시 건구온도의 영향은 크고, 상대습도의 영향은 미미함을 알 수 있었다.

  • PDF

Analysis on the Uniformity of Temperature and Humidity According to Environment Control in Tomato Greenhouses (토마토 재배 온실의 환경조절에 따른 온습도 균일도 분석)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.215-224
    • /
    • 2009
  • A survey on the actual state of heating, cooling, ventilation, and air-flow and experimental measurement of temperature and humidity distribution in tomato greenhouse were performed to provide fundamental data required in the development of air-flow control technology. In single-span plastic houses, which account for most of 136 tomato greenhouses surveyed, roof windows, ventilation and air-flow fans were installed in a low rate, and installation specs of those facilities showed a very large deviation. There were no farms installed greenhouse cooling facilities. In the hot air heating system, which account for most of heating type, installation specs of hot air duct showed also a large deviation. The exhaust air temperature and wind speed in hot air duct also were measured to have a big difference depending on the distance from the heater. We are using the maximum difference as indicator to determine whether temperature distribution is uniform. However if the temperature slope is not identical in greenhouse, it can't represent the uniformity. We analyzed relation between the maximum difference and the uniformity of temperature and humidity distribution. The uniformity was calculated using the mean and standard deviation of data from 12 measuring points. They showed high correlation but were represented differently by linear in the daytime and quadratic in the nighttime. It could see that the uniformity of temperature and humidity distribution was much different according to greenhouse type and heating method. The installation guidelines for ventilation and air-flow fan, the spread of greenhouse cooling technology for year-round stable production, and improvement of air duct and heating system, etc. are needed.

Proper Installation Distance for Heating Effect of Nano-Carbon Fiber Infrared Heating Lamp for Stable Production of Watermelon Grafted Seedlings in Winter Season (동절기 수박 접목묘의 안정적 생산을 위한 나노탄소섬유적외선 램프의 난방효과에 대한 적정 설치간격)

  • Kim, Hye Min;Jeong, Hyeon Woo;Hwang, Hee Sung;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.8-13
    • /
    • 2022
  • This study was carried out to investigate the proper wattage and installation distance for the efficient use of nano-carbon fiber infrared heating lamp (NCFIHL), a heating device advantageous for heating energy saving, when the production of watermelon plug seedlings in the plug seedling nursery in winter season. Six small beds were divided into plastic film, and 700 W and 900 W nano-carbon fiber infrared heating lamps were installed at 100 cm above the bed. 1 lamp at central (control), 60 cm interval (2 lamps), and 40 cm interval (3 lamps) heating lamps were installed in each bed inside the greenhouse. All treatments, except the control, were set to keep the night air temperature at 20℃ after lighting the NCFIHL. The leaf temperature showed a tendency to increase fast as the install distance was narrow. The leaf length and leaf width tended to increase as the installation distance of the 700 W heating lamp was narrow. The compactness was high in 700 W heating lamp with 40 cm of installation distance. Therefore, in consideration of maintaining the set temperature at night, installing 700 W electric lamps at 40 cm was an efficient power and installation distance for watermelon grafted seedlings considering economic feasibility.

Projection of Future Heating and Cooling Degree Days over South Korea under the IPCC SRES Scenarios: An Experiment with CCSM3 and MM5 Models (IPCC SRES 시나리오에 따른 우리나라의 미래 냉난방도일 전망: CCSM3와 MM5 모델 활용)

  • Choi, Jin Young;Song, Chang Kun;Kim, Deok Rae;Hong, Sung Chul;Hong, Yoo Deog;Lee, Jae Bum
    • Journal of Climate Change Research
    • /
    • v.4 no.2
    • /
    • pp.141-158
    • /
    • 2013
  • In this study, the projection of future heating and cooling degree days (HDDs and CDDs) has been conducted over South Korea for the period 1996~2005 with 2046~2055 and 2091~2100, using CCSM3 and MM5 simulations driven by the six IPCC SRES emission scenarios (A2, A1B, A1FI, A1T, B1, and B2). Annual mean surface air temperature increases by $1.2{\sim}3.4^{\circ}C$ at the end of the 21st century comparing to the present-day (1996~2005) in South Korea. HDDs decrease by 8~25% and CDDs increase up to 242~1,448% with corresponding changes in temperature. These increases and decreases also change the duration of HDDs and CDDs. HDDs duration decreases by 1 month, while the expansion of CDDs duration is much longer than 2 months. Thus, projected future HDDs and CDDs changes appear that cooling energy demand in summer season would increase and heating energy demand in winter would decrease in the future. Especially, these remarkable changes would be obvious at high mountain area, Gangwon-do and at south area, Jeju island. In the sense of future energy supply and policy, electrical energy for cooling in summer could be getting much more its importance rather than fossil energy used for heating in winter.

A study on the versatility of railway vehicles. saving electric heater (철도 차량용 객실 전기 난방기의 다목적 활용에 대한연구)

  • An, Jong-Kon;Chai, Jin-Woo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.116-123
    • /
    • 2010
  • The Study of the Railway-saving electric water heaters to replace electric heaters when combined, Separate bathroom with hot water in winter, as coaches, without the need to warm up with hot water may be.To improve passenger service can tell. High-efficiency energy saving energy from furnace. Due to fuel cost savings and business improvements come true. Can prevent pollution.Heating the room next to railway vehicle utilization is expected to nopeulgeot.Is expected to expand gradually.

  • PDF

Mechanism improvement of the heat exchanger and the ventilator for the thermal efficiency increment of hot-air heater (온풍난방기의 열이용효율 증대를 위한 열교환부 및 송풍기 구조개선)

  • 이기명;박규식;최성우
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.558-563
    • /
    • 2002
  • 시설원예에서 난방장치를 사용하는 겨울철 재배 농산물의 생산비 중 난방 연료비가 30%~37% 정도를 차지하여 비중이 가장 높다. 따라서 시설원예 농가에서는 난방비를 절감하는 것이 농가소득과 직결되므로, 난방장치의 선정이 대단히 중요하다. 본 연구에서는 겨울철 재배 농산물의 생산비 중 30%-37% 정도를 차지하는 연료비를 절감하기 위해 기존의 온풍난방기와 다른 새로운 방식의 열교환기와 원심식 송풍블로워를 사용하는 블로워 송풍방식의 온풍난방기를 개발하고 개발된 온풍난방기의 가동으로 인한 난방 연료비 절감효과와 온실내의 균일한 온도분포를 획득하기 위해 8연동 비닐온실에서의 시험을 실시하였으며 얻어진 결과를 요약하면 다음과 같다. 가. 저 정압용의 전동기 축직결식 송풍팬을 대신하여 고 정압용의 블로워 송풍팬을 장착하고 열교환 면적을 크게 한 지그재그식 환류의 열교환실을 채용한 온풍난방기를 개발하였다. 나. 공시한 온실에서 기존 온풍난방기의 2일 가동시 DH당 연료 사용량이 평균 1.082$\ell$/$^{\circ}C$.hr 이며, 블로워 송풍방식 온풍난방기의 3일 가동시 DH당 연료 사용량은 평균 0.854$\ell$/$^{\circ}C$.hr로써 21%의 난방 연료비 절감효과가 나타났다. 다. 블로워 송풍방식 온풍난방기는 동일시간대 3$^{\circ}C$의 경시적 온도변화가 발생하였고, 기존의 은풍난방기의 동일시간대 온도변화는 최대 6.1$^{\circ}C$로 나타나 개발된 블로워 송풍방식 온풍난방기가 동일시간대 온실내의 온도변화를 크게 줄일 수 있었고 온도분포를 비교적 균일하게 하는 효과가 있음을 확인하였다.도 33$^{\circ}C$를 기준으로 한 열 회수 시간은 유입공기 온도가 52$^{\circ}C$ 및 64$^{\circ}C$ 일 각각 120분 및 140분으로 나타났다. (3) 제 3종 자갈: 축열조로 공급되는 공기의 온도가 52$^{\circ}C$와 64$^{\circ}C$ 일 때, 축열조 출구의 공기온도가 33$^{\circ}C$에 도달될 때까지 가열되는데 소요된 시간은 가열공기의 온도가 52$^{\circ}C$와 64$^{\circ}C$ 일 때 각각 180분과 150분이었고, 방열에 소요된 시간은 각각 240분 및 270분으로 나타났다. 방열과정 동안 축열조 출구의 최고 공기온도는 가열 공급공기의 온도가 52$^{\circ}C$$65^{\circ}C$일 때 각각 35.5$^{\circ}C$ 및 39.5$^{\circ}C$였다. 출구 공기온도 33$^{\circ}C$이상을 기준으로 한 에너지 회수시간은 유입공기 온도가 52$^{\circ}C$ 및 64$^{\circ}C$일 때 각각 140분 및 160분으로 나타났다. 이와 같이 자갈이 작을수록 축열조 출구의 공기온도가 기준온도 33$^{\circ}C$에 도달되는 시간이 길었으며, 이것은 축열조내의 공극이 작고 비중량이 커 자갈층을 가열시키는 축열시간이 길어지기 때문인 것으로 사료된다. 또한 작은 자갈일수록 방열시간도 다소 길어져 회수 가능 열에너지가 큰 것으로 나타났다

  • PDF