Temporal and Spatial Variability of Heating and Cooling Degree-days in South Korea, 1973-2002

한반도 난${\cdot}$냉방도일의 시공간 분포 특성 변화에 관한 연구

  • Choi, Youn-Geun (Department of Geography, College of Science, Konkuk University)
  • Published : 2005.12.01

Abstract

The spatial and temporal variations of heating degree-days (HDDs) and cooling degree-days (CDDs) are closely related with the temperature field. The spatial distribution of 30-year mean HDDs shows that the higher values locates in the northern part of South Korea while the lower values locates in the southern part. The 30-year mean CDDs shows a more randomized distribution than the HDDs. The changing trends of HDDs and CDDs show a different feature: HDDs have a distinct decreasing trend while CDDs have an insignificant change. The decreasing trends of HDDs are consistent over South Korea and most of stations have experienced the statistically significant change. As significant changing areas of HDDs are much broader than those of annual mean temperature, HDDs can be more useful than annual mean temperature to detect the climate change impact on a regional level. In other words, an insignificant change on the mean temperature field can induce the significant change of thermal climatology in a region. The temporal pattern of climatic departure index (CDI) for South Korea HDDs series shows a general decreasing, but a sharp increase during recent years. The drastic decrease of HDDs induces higher CDI indicating larger variability among stations. However, the decrease of South Korea HDDs series cannot totally attribute to the global warming due to urban effects. By the early 1980s, there were no big differences of HDDs between urban and rural series, but later the differences are getting larger. This was expected to be with the intensification of urbanization in South Korea. However, still there is a decreasing trend of HDDs for rural stations.

난방도일과 냉방도일은 에너지 사용량 예측에 사용되는 개념으로 특정 지역의 열기후적 특성을 이해하는 데 유용하게 사용되어 왔다. 난방도일과 냉방도일의 공간 분포는 반대로 나타난다. 난방도일의 경우 남부에서 최소가 나타나고 북쪽으로 올수록 그 값이 증가하고 강원도를 포함한 북동쪽에서 최대가 나타났다. 냉방도일은 제주도와 남부에서 최대가 나타나고 북쪽으로 올수록 그 값이 감소한다. 냉방도일에는 최근 30년간 뚜렷한 변화 경향이 나타나지 않지만 난방도일의 경우는 모든 지점에서 뚜렷한 감소 경향이 나타났다. 난방도일의 감소는 최저기온의 급격한 상승에 기인한 것으로 판단된다. 또한 난방도일의 감소는 연 평균기온의 증가보다 뚜렷한 변화 경향을 나타냈다. 평균기온에서 뚜렷한 변화 경향이 탐지되지 않더라도 기후변화의 영향이 존재할 수 있음을 나타낸다. 또한 최근 급격한 난방도일의 감소는 기후편차지수의 증가를 초래하여 한반도 내 난방도일의 변동이 커지고 있음을 보여주고 있다.

Keywords

References

  1. Chessa, P. O. and A. M. S. Delitala, 1997, Objective analysis of daily extreme temperatures of Sardina(Italy) using distance from the sea as independent variable, International Journal of Climatology, 17, 1467-1485 https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1467::AID-JOC200>3.0.CO;2-J
  2. Choi, Y., 2004, Trends on temperature and precipitation extreme events in Korea, Journal of the Korean Geographical Society, 39, 711-721
  3. Choi, Y., H-S. Jung, K. Y. Nam, and W. T. Kwon, 2003, Adjusting urban bias in the regional mean surface temperature series of South Korea, 1968- 1999, International Journal of Climatology, 23, 577-591
  4. Downton, M. W., T. R. Stewart and K. A. Miller, 1988, Estimating historical heating and cooling needs: per capita degree days, Journal of Applied Meteorology, 27, 84-90 https://doi.org/10.1175/1520-0450(1988)027<0084:EHHACN>2.0.CO;2
  5. Frich, P., L. V. Alexander, P. Della-Marta, B. Bleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson, 2002, Observed coherent changes in climatic extremes during the second half of the twentieth century, Climate Research, 19, 193-212 https://doi.org/10.3354/cr019193
  6. Hargy, V. T., 1997, Objectively mapping accumulated temperature for Ireland, International Journal of Climatology, 17, 909-927 https://doi.org/10.1002/(SICI)1097-0088(199707)17:9<909::AID-JOC163>3.0.CO;2-C
  7. Hartley, S. and D. Robinson, 2000, A shift in winter season timing in the northern plain of the USA as indicated by temporal analysis of heating degree days, International Journal of Climatology, 20, 365-379 https://doi.org/10.1002/(SICI)1097-0088(20000330)20:4<365::AID-JOC478>3.0.CO;2-7
  8. Houghton, J. T., Y. Ding, D. T. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001, Climate Change 2001: The Scientific Basis, Cambridge University Press
  9. Jung, H. S., Y. Choi, J. H. Oh, and G. H. Lim, 2002, Recent trends in temperature and precipitation over South Korea, International Journal of Climatology, 22, 1327-1337 https://doi.org/10.1002/joc.797
  10. Lamb, P. R. and S. A. Changnon, 1981, On the best temperature and precipitation normals: the Illinois situation, Journal of Applied Meteorology, 20, 1383-1390 https://doi.org/10.1175/1520-0450(1981)020<1383:OTTAPN>2.0.CO;2
  11. Lee, H., 1980, Heating degree-day in major cities of Korea, Geography, 22, 10-22
  12. Ministry of Water, Land and Air protection, 2002, Indicators of Climate Change for British Columbia 2002, British Columbia, Canada
  13. Quayle, R. and H. Diaz, 1980, Heating degree day data applied to residential heating energy consumption, Journal of Applied Meteorology, 19, 241-246 https://doi.org/10.1175/1520-0450(1980)019<0241:HDDDAT>2.0.CO;2
  14. Sanderson, M., 1983, Heating degree day research in Alberta: residents conserve natural gas, Professional Geographers, 35, 437-440 https://doi.org/10.1111/j.0033-0124.1983.00437.x
  15. Soule, R. T. and P. H. Suckling, 1995, Variations in heating and cooling degree-days in the southern-eastern USA, 1960-1989, International Journal of Climatology, 15, 355-367
  16. Thompson, R. D. and A. Perry, 1997, Applied Climatology: Principles and Practice, Routledge