• Title/Summary/Keyword: 낙상판별

Search Result 18, Processing Time 0.036 seconds

The development of fall detection system using 3-axis acceleration sensor and tilt sensor (3축 가속도센서와 기울기 센서를 이용한 낙상감지시스템 개발)

  • Ryu, Jeong Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.4
    • /
    • pp.19-24
    • /
    • 2013
  • The problem of elderly people with weak physical health has become a very important issue in the aging society. Elderly people with very low judgment and decision-making skills often falls because of the degradation of the strength and balance. Due to the fall triggered off fractures, parenchyma damage, and casualties, generally fast emergency treatment is needed. In this paper, an automatic fall detection system consisting of a triaxial accelerometer and tilt sensor. Using the fall system, the performance of the system was analyzed in many situations. The experimental results showed more than 92% analytical skills.

Research for effective accelerometer signal processing to detect the falling activity (낙상 검출을 위한 가속도 센서의 효율적인 신호처리 기법 연구)

  • Lee, Young-Jae;Lee, Pil-Jae;Yang, Heui-Kyung;Kim, Choong-Hyun;Lee, Jeong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1794-1795
    • /
    • 2011
  • 본 연구에서는 가속도 센서의 값을 디지털 신호 처리 과정을 통하여 저역통과 필터(low pass filter), 벡터의 크기(vector magnitude), 롤(roll) 그리고 피치(pitch)를 계산하는 알고리즘을 적용하였다. 필터의 경우 IIR(Infinite Impulse Response)을 이용하였으며 차수는 9차로 하였다. 피험자의 연령은 $25{\pm}5$세의 10명을 기준으로 실험하였으며 앞, 뒤, 좌, 우 방향으로 직각 낙하하도록 하였고 센서 모듈은 오른쪽 허리의 정중앙에 착용하도록 하여 피험자간의 오차가 발생하지 않도록 하였다. 환자의 낙상을 검출하기 위해서 벡터의 크기를 사용하였고 롤과 피치를 이용하여 환자의 낙상 방향을 검출하였다. 결과적으로 피험자 10명의 경우 낙상의 검출률은 100% 였으며 낙상 방향에 따른 앞, 뒤, 좌, 우 판별 정확도는 95% 정도이다. 낙상 방향의 판별은 사고 후 환자를 다룰 때의 주의할 신체부위를 참고하며 재활 운동 시 하체의 어느 쪽이 낙상의 주요인인지 분석하는 보조 자료가 될 수 있다.

  • PDF

Fall detection of the elderly through floor vibrations (바닥 진동을 통한 노인 낙상 검출)

  • Kim, Dong-Wan;Ryu, Jong-Hyun;Beack, Seung-Hwa
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.134-139
    • /
    • 2014
  • According to survey, more than 57.2% of the fall which is the most frequent safety accident of the elders takes place at home. This research aims to verify the fall by measuring and analyzing the floor vibration. And the vibration sensor module was designed with piezo film sensor and operation amplifier. The vibration signals are converted to digital signals through the data acquisition device and vibration sensor module. And then modified the signals into frequency domain to obtain characteristic vibration data. The characteristic signals are verified by K-Nearest Neighbor verification, and experimental results shows the recognition rate 93.6%. Also the fall detection sensor module is useful for extract the meaningful data for fall detection. 10 persons are participated for this experiment.

A simulation on fall detection system for the elders (노인의 낙상 검출 시스템에 관한 연구)

  • Kim, Dong-Wan;Ryu, Jong-Hyun;Beack, Seung-Hwa
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • According to a survey, more than 50% of the elders fall which is the most frequent daily safety accident of the elders takes place at home. Furthermore, the elders fall is anticipated to increase as more elderly people are expected to live alone since, 67.1% of the elders of 65 or more do not hope to live with their children. This research aims to verify the fall by measuring and analyzing the floor vibration, and the hardware system was also designed was Piezo Film Sensor, Op-Amp, and DAQ. The system is consists of signal processing part for measuring floor vibration and alarm part for identifying the consciousness of the user when the fall occurs. The fall detection by vibration signals verified by k-Nearest Neighbor verification, and the results showed the error rate of 3.8%.

A Basic Study on the Fall Direction Recognition System Using Smart phone (스마트폰을 이용한 낙상 방향 검출 시스템의 기초 연구)

  • Na, Ye-Ji;Lee, Sang-Jun;Wang, Chang-Won;Jeong, Hwa-Young;Ho, Jong-Gab;Min, Se-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1384-1387
    • /
    • 2015
  • 고령화 사회로 진입하면서 노인들은 노화과정에 의한 보행능력의 감소 및 근력 약화와 같은 신체적 변화로 인해 잦은 낙상을 경험한다. 이에 따라 낙상 사고를 감지하는 연구가 활발히 진행되고 있다. 낙상은 사전 예방도 중요하지만 사고 발생 후의 신속한 대처도 중요하다. 낙상을 감지하고 의료진에게 즉시 낙상정보를 제공하여 후속적 조치를 취하는 것은 사고 후 대처의 핵심이다. 본 논문에서는 스마트폰 환경에서 사용자의 낙상 후 방향을 판별하기 위해 두 가지 센서 데이터의 특정 값들을 추출하였으며, 이에 5 가지 기계학습 알고리즘을 적용하였다. 사용자는 스마트폰을 착용한 상태로 전후좌우 4 방향 낙상 실험을 진행하며 스마트폰 내에 내장된 3 축 가속도 센서와 3 축 자이로 센서값을 측정한다. 피험자 11 명을 대상으로 낙상 실험 결과, 5 가지의 분류기 중 k-NN에서 98.6%의 인식률을 나타내었다. 뽑아낸 특징 값과 분류 알고리즘은 낙상의 방향 검출에 유용한 것으로 판단된다.

Extraction of Fall-Feature Parameters for Fall Detection System Using 3-Axial Acceleration Sensor Data (3축 가속도 센서 낙상 감지 시스템을 위한 낙상 특징 파라미터 추출)

  • Lim, DongHa;Park, ChulHo;Yu, YunSeop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.393-395
    • /
    • 2013
  • In modern society, the elderly over 65 years old are increasing due to development of medical technology and improvement of their standard of living. Severe fall of the elderly can lead to death threats. To solve this problem, several algorithms and hardware systems for fall detection have been studied and developed. In this paper, a fall detection system using 3-axial acceleration sensor is presented. In the fall detection system, several types of fall-feature parameters are calculated and then the fall is determined by using them. Using this system, best sensitivity and specificity are 98.3% and 94.7%, respectively.

  • PDF

Real-time Fall Accident Prediction using Random Forest in IoT Environment (사물인터넷 환경에서 랜덤포레스트를 이용한 실시간 낙상 사고 예측)

  • Chan-Woo Bang;Bong-Hyun Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.4
    • /
    • pp.27-33
    • /
    • 2024
  • As of 2023, the number of accident victims in the domestic construction industry is 26,829, ranking second only to other businesses (service industries). The accident types of casualties in all industries were falls (29,229 people), followed by falls (14,357 people). Based on the above data, this study attaches sensors to hard hats and insoles to predict fall accidents that frequently occur at construction sites, and proposes smart safety equipment that applies a random forest algorithm based on the data collected through this. The random forest model can determine fall accidents in real time with high accuracy by generating multiple decision trees and combining the predictions of each tree. This model classifies whether a worker has had a fall accident and the type of behavior through data collected from the MPU-6050 sensor attached to the hard hat. Fall accidents that are primarily determined from hard hats are secondarily predicted through sensors attached to the insole, thereby increasing prediction accuracy. It is expected that this will enable rapid response in the event of an accident, thereby reducing worker deaths and accidents.

A Study on the Estimation of Energy Expenditure and falls measurement system for the elderly (고령자를 위한 에너지 소비 추정 및 낙상 측정 시스템에 관한 연구)

  • Lim, Chae-Young;Jeon, Ki-Man;Ko, Kwang-Cheol;Koh, Kwang-Nak;Kim, Kyung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • As we are turnning into the aged society, accidents by falling down are increasing in the aged people's group. In this paper, we design the system with the 3-Axis acceleration sensor which is composed by a single chip. The body activity signal is measured with the signal detector and RF communicator in this proposed system and the and falling by the entering signal pattern analysis with 3-Axis acceleration sensor. For the RF communication, we are using nRF24L01p and 8bits ATmega uC for the processor. The error of energy expenditure estimation between motor driven treadmill and proposed a body activity module was 7.8% respectively. Human activities and falling is monitored according to analyze and judge the critical value of the Signal Vector. as falled down if they don't turn off the alarm after specific period and the aged person's after falling down activities are their position and more.

Comparison of Deep Learning Based Pose Detection Models to Detect Fall of Workers in Underground Utility Tunnels (딥러닝 자세 추정 모델을 이용한 지하공동구 다중 작업자 낙상 검출 모델 비교)

  • Jeongsoo Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.302-314
    • /
    • 2024
  • Purpose: This study proposes a fall detection model based on a top-down deep learning pose estimation model to automatically determine falls of multiple workers in an underground utility tunnel, and evaluates the performance of the proposed model. Method: A model is presented that combines fall discrimination rules with the results inferred from YOLOv8-pose, one of the top-down pose estimation models, and metrics of the model are evaluated for images of standing and falling two or fewer workers in the tunnel. The same process is also conducted for a bottom-up type of pose estimation model (OpenPose). In addition, due to dependency of the falling interference of the models on worker detection by YOLOv8-pose and OpenPose, metrics of the models for fall was not only investigated, but also for person. Result: For worker detection, both YOLOv8-pose and OpenPose models have F1-score of 0.88 and 0.71, respectively. However, for fall detection, the metrics were deteriorated to 0.71 and 0.23. The results of the OpenPose based model were due to partially detected worker body, and detected workers but fail to part them correctly. Conclusion: Use of top-down type of pose estimation models would be more effective way to detect fall of workers in the underground utility tunnel, with respect to joint recognition and partition between workers.

Implementation of Fall Accident Detection System (낙상사고 감지 시스템 구현)

  • Ju, Eun-Su;Im, Hyo-Gyeong;Lee, Sang-Min;Park, Seong-Ik;Jeon, Chan-Ho;Jung, Young-Seok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.461-462
    • /
    • 2022
  • 최근 지속적인 출산율의 감소와 평균수명의 증가로 인하여, 대한민국의 초고령 사회는 예상보다 훨씬 빠르게 증가하고 있다. 핵가족 형태가 보편화되며 1인 가구도 함께 늘고 있어서 홀로 사는 노인의 수 역시 증가하는 추세이다. 주거 공간에서 낙상사고와 같은 고령화 안전사고가 많이 발생하고 있다. 혼자 사는 독거노인들의 경우 사고 발생 즉시 대처가 가능한 보호자가 없다는 문제점이 있다. 본 논문에서는 MediaPipe를 이용한 낙상사고 감지 시스템을 개발한다. 먼저, 이 시스템은 MediaPipe를 이용해서 카메라를 통해 실시간으로 수신된 영상에서 사람을 인식하고, 자세 유형 분석을 통해 낙상사고 발생 여부를 판별하여 애플리케이션을 통해 보호자에게 현장 상황을 알려주는 시스템이다. 낙상사고가 발생했다면 보호자용 애플리케이션을 통해 사고 발생 알림 및 현장 사진을 보여준다. 이와 같은 기술을 활용하여 응급상황에 처한 노인을 빠르게 구조하며 독거노인의 생활안전사고 문제를 해결하는 데에 기여하고자 한다.

  • PDF