DOI QR코드

DOI QR Code

Fall detection of the elderly through floor vibrations

바닥 진동을 통한 노인 낙상 검출

  • Received : 2013.12.05
  • Accepted : 2014.03.13
  • Published : 2014.03.31

Abstract

According to survey, more than 57.2% of the fall which is the most frequent safety accident of the elders takes place at home. This research aims to verify the fall by measuring and analyzing the floor vibration. And the vibration sensor module was designed with piezo film sensor and operation amplifier. The vibration signals are converted to digital signals through the data acquisition device and vibration sensor module. And then modified the signals into frequency domain to obtain characteristic vibration data. The characteristic signals are verified by K-Nearest Neighbor verification, and experimental results shows the recognition rate 93.6%. Also the fall detection sensor module is useful for extract the meaningful data for fall detection. 10 persons are participated for this experiment.

노인의 생활안전 사고 유형 중 가장 높은 비율을 차지하는 낙상은 57.2%이상이 가정에서 발생하는 것으로 조사되었다. 본 연구에서는 실내 바닥의 진동을 측정, 분석하여 낙상의 유무를 판별하고자 하였으며, 이를 위해 압전필름과 연산증폭기로 증폭 및 필터링 회로를 제작하여 진동 센서 모듈을 구성하였다. 진동 센서 모듈에서 증폭 및 필터링 과정을 거친 진동 신호는 데이터 수집 장치를 통해 디지털 신호로 변환되어 PC로 전송된다. 진동 신호는 k-NN 분류기를 이용하여 낙상 유무를 판별한다. 피험자 10명을 대상으로 낙상 실험결과, 분류기는 93.6%의 인식율을 나타내었다. 제작된 센서 모듈은 낙상 검출에 유용한 것으로 판단된다.

Keywords

References

  1. "Investigation of accidents of life of the elderly in 2007" , Korea Consumer Agency, 2007
  2. Mary E. Tinetti and Christianna S. Williams, "The effect of falls and fall injuries on functioning in community-dwelling older persons" The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, Vol. 53, No. 2, pp. 112-119 1998
  3. Fuller GF, "Falls in the elderly" The Journals of Gerontology Series A: Am Fam Physician. Vol. 6 No. 1 pp. 2159-2168, Apr, 2000
  4. Jong-Min Kim, Myung-Sun Lee, "Risk Factors for Falls in the Elderly Population in Korea:An Analysis of the Third Korea National Health and Nutrition Examination Survey data", Joural of Korea Society for Health Education and Promotion Vol.24, No 4, pp. 23-39, 2007
  5. Chia-Wen Lin, Zhi-Hong Ling, Yuan-Cheng Chang, Chung J. Kuo, "Compressed-domain fall incident detection for intelligent home surveillance", IEEE International Symposium on Circuits and Systems, Vol. 4, pp.3781-3784, May 2005
  6. C. F. Juang and C. M. Chang, "Human Body Posture Classification by a Neural Fuzzy Network and Home Care System Application," IEEE Trans. Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 37, No. 6, pp. 984-994, Nov. 2007. https://doi.org/10.1109/TSMCA.2007.897609
  7. Nam Ho Kim, Yun Seop Yu "Video Based Fall Detection Algorithm Using Hidden Markov Model", Journal of The Institute of Electronics Engineers of Korea Vol. 50, NO. 8, pp. 2160-2165, August 2013
  8. T. Zhang, J. Wang, L. Xu and P. Liu, "Detection by Wearable Fall Sensor and One-Class SVM Algorithm," in Lecture Notes in Control and Information Sciences, pp. 858-863, 2006.
  9. T. Zhang, J. Wang, P. Liu and J. Hou, Journal "Fall Detection by Embedding an Accelerometer in Cellphone and Using KFD Algorithm," IJCSNS International of Computer Science and Network Security, Vol. 6, No. 10, pp. 277-284, Oct. 2006.
  10. Kim Dong-Wan, Ryu Jong-Hyun, Beack Seung-Hwa, "A simulation on fall detection system for the elders," Journal of IKEEE / v.17 no.1, pp.22-28, 2013 https://doi.org/10.7471/ikeee.2013.17.1.022

Cited by

  1. 한국 노인의 넘어짐과 연계된 인체손상에 대한 이해와 예방: 체계적 문헌 고찰 vol.26, pp.2, 2014, https://doi.org/10.12674/ptk.2019.26.2.034