• Title/Summary/Keyword: 나트륨 농축수

Search Result 23, Processing Time 0.031 seconds

Synthesis of Na Compounds from Sodium Concentrated Solution Using Carbonation and Cryo-crystallization (탄산화 및 저온 결정화를 통한 나트륨 농축수로부터 나트륨 화합물 합성)

  • Lee, Seung-Woo;Chae, Soochun;Bang, Jun-Hwan
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.58-66
    • /
    • 2020
  • Carbonation (step I) and cryo-crystallization (crystallization at low temperature) (step II) were performed to synthesize Na compounds from sodium concentrated solution. In the step 1, the solubility and pH of carbon dioxide (95 wt.%) affecting carbonation could be changed by the variation of reaction temperature. The step II was performed at 2 ℃ after carbonation. The injection of carbon dioxide was carried out twice for the stable production and the saturated solubility of carbonate ions in solution. Firstly, we tried to inject CO2 for controlling the solubility of CO2 by changing the reaction temperature from 35 ℃ to 10 ℃, and the second injection was aimed at 10 ℃ for inducing nucleation of Na compound through carbonation after NaCl solution addition. In the cryo-crystallization step, the crystal growth of Na compounds could be induced by slowing the carbonation rate through reaction temperature change from 10 ℃ to 2 ℃. In this study, the effect on NaOH concentration was examined and the purity of Na compound was increased when 2M NaOH was used. In addition, the synthesized Na compounds were mostly rod-shaped and consisted of sodium carbonate or sodium carbonate with monohydrate.

Oxidation of Endocrine Disrupting Chemicals Using Sodium Persulfate (과황산나트륨을 이용한 내분비계장애물질 산화제거)

  • Lim, Chan Soo;Yun, Yeo Bog;Kim, Do Gun;Ko, Seok Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.609-617
    • /
    • 2013
  • The objective of this study was to evaluate the oxidation method to remove endocrine disrupting chemicals in reverse osmosis(RO) retentate for the reuse of wastewater effluent. Oxidation of organic pollutants was induced by the persulfate catalyzed by Fe(II). Affecting factors such as initial pH and ionic strength on the Fe(II) catalyzed persulfate oxidation were evaluated. $17{\alpha}$-ethynylestradiol (EE2) degradation efficiency decreased as pH and ionic strength increased. However, the efficiency increased as chloride ion concentration increased due to the influence of radical transfer.

Physico-Chemical Characteristics of White, Fermented and Red Ginseng Extracts (백삼, 발효인삼, 홍삼 농축액의 이화학적 특성)

  • Kong, Byoung-Man;Park, Min-Ju;Min, Jin-Woo;Kim, Ho-Bin;Kim, Se-Hwa;Kim, Se-Young;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.238-243
    • /
    • 2008
  • Comparison of the physico-chemical characteristics were investigated among white (WG), fermented (FG) and red ginseng (RG) extracts. We observed maximum contents of extractable solids in FG, but viscosity was lower than other ginseng extracts. The contents of ash and crude protein of FG were higher than those of other ginseng extracts. The contents of carbohydrate were similar, but component Na and cruid lipids were maximum in RG. we extended our study on comparison of the calories among WG, FG and RG. We noticed that comparison of the calories among WG, FG and RG showed insignificant difference.

The Hardness Water Production By RO/NF/ED Linking Process From Deep Seawater (RO/NF/ED 연계 공정에 의한 고경도 담수 제조)

  • Moon, Deok-Soo;Kim, Kwang Soo;Gi, Ho;Choi, Mi Yeon;Jung, Hyun Ji;Kim, Hyun Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.227-238
    • /
    • 2013
  • The purpose of this study is to develop a process technology to produce high hardness drinking water which meet drinking water standard, remaining useful minerals like magnesium and calcium in the seawater desalination process while removing the sulfate ions and chloride ions. Seawater have been separated the concentrated seawater and desalted seawater by passing on Reverse Osmosis membrane (RO). Using Nano-filtration membrane (NF), We were prepared primary mineral concentrated water that sodium chloride were not removed. By the operation of electro-dialysis (ED) having ion exchange membrane, we were prepared concentrated mineral water (Mineral enriched desalted water) which the sodium chloride is removed. We have produced the high hardness water to meet the drinking water quality standards by diluting the mineral enriched desalted water with deionized water by RO. Reverse osmosis membranes (RO) can separate dissolved material and freshwater from seawater (deep seawater). The desalination water throughout the second reverse osmosis membrane was completely removed dissolved substances, which dissolved components was removed more than 99.9%, its the hardness concentration was 1 mg/L or less and its chloride concentration was 2.3 mg/L. Since the nano-filtration membrane pore size is $10^{-9}$ m, 50% of magnesium ions and calcium ions can not pass through the nano-filtration membrane, while more than 95% of sodium ions and chloride ions can pass through NF membrane. Nano-filtration membrane could be separated salt components like sodium ion and chloride ions and hardness ingredients like magnesium ions and calcium ions, but their separation was not perfect. Electric dialysis membrane system can be separated single charged ions (like sodium and chloride ions) and double charged ions (like magnesium and calcium ions) depending on its electrical conductivity. Above electrical conductivity 20mS/cm, hardness components (like magnesium and calcium ions) did not removed, on the other hand salt ingredients like sodium and chloride ions was removed continuously. Thus, we were able to concentrate hardness components (like magnesium and calcium ions) using nano-filtration membrane, also could be separated salts ingredients from the hardness concentration water using electrical dialysis membrane system. Finally, we were able to produce a highly concentrated mineral water removed chloride ions, which hardness concentration was 12,600 mg/L and chloride concentration was 2,446 mg/L. By diluting 10 times these high mineral water with secondary RO (Reverse Osmosis) desalination water, we could produce high mineral water suitable for drinking water standards, which chloride concentration was 244 mg/L at the same time hardness concentration 1,260 mg/L. Using the linked process with reverse osmosis (RO)/nano filteration (NF)/electric dialysis (ED), it could be concentrated hardness components like magnesium ions and calcium ions while at the same time removing salt ingredients like chloride ions and sodium ion without heating seawater. Thus, using only membrane as RO, NF and ED without heating seawater, it was possible to produce drinking water containing high hardness suitable for drinking water standard while reducing the energy required to evaporation.

The Operation Experience of the Concentrated Waste Drying System with Variation in the Mole Ratio of Boron to Sodium (방사성 폐액중의 붕소와 나트륨의 몰비 변화에 따른 농축폐액건조설비 운전 경험사례)

  • 김영식;김세태;안교수;박진석;박종길
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.220-225
    • /
    • 2003
  • Generally, liquid radioactive wastes generated in nuclear power plant exist in powder form which do not contain moisture through the evaporating process of the Liquid Waste Management System and drying process of the Concentrated Waste Drying System. This powder form wastes are blended homogeneously with paraffin solidification agent and packed in metal drum to ensure its stability during handling and disposal. However, it was experienced that the powder form wastes were not blended homogeneously and separated into two layers in metal drum, on the other hand, a Portion of powder was adhered and solidified to the Inside parts of facility during the blending process. And the flaw of blending process above would come in case the mole ratio of Boron to Sodium in liquid radioactive wastes exceeds 0.2.

  • PDF

Production of Hard Water From Seawater Using Electrodialysis (해수로부터 전기투석 장치를 이용한 고경도 수 제조)

  • Ji, Ho;Kim, Kwang Soo;Moon, Deok Soo;Kim, Hyeon Ju;Lee, Ho Saeng
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • There are various ions in seawater. In order to use seawater as the drinking water, some elements are to be concentrated and other elements are to be removed. To obtain these characteristics using seawater, it is necessary to adjust seawater quality. Because calcium and magnesium are especially healthful to human bodies, it is required to concentrate these elements. In this study, the technology to obtain the hard water from seawater by electerodialysis was investigated. After concentrated water was produced using nanofiltration membranes, sodium chloride was eliminated from the concentrated water by electrodialysis. The hard water production from seawater was successfully achieved using electrodialysis in this study.

A Feasibility Study on the Polymer Solidification of Evaporator Concentrated Wastes (폐액증발기 농축폐액 폴리머고화 타당성 연구)

  • Yang, Ho-Yeon;Kim, Ju-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.297-308
    • /
    • 2007
  • The granulation equipment of concentrated wastes is manufactured for the polymer solidification of concentrated wastes. It uses liquid sodium silicate as a granulating agent for the granulating of dried powder containing boric acid. The granulating agent is sprayed in the form of droplet and mean size of dried granules is $2{\sim}4mm$. The new technology which has been used for the polymer solidification of spent resin in U.S. and certified by Nuclear Regulatory Commission (NRC) is successfully applied to concentrated wastes. This uses in-situ solidification process within drum without mechanical mixing. Maximum loading of waste can be achieved without increasing of waste volume. Polymer waste forms were evaluated with several test such as fire test, compressive strength test, leaching test, immersion test, irradiation test, and thermal cycling test according to standard test procedures.

  • PDF

Mineral extraction from by-products of brown rice using electrodialysis and production of mineral salt containing lower sodium (전기투석을 이용한 현미부산물로부터의 미네랄성분 추출 및 나트륨감량형 미네랄 소금 제조)

  • No, Nam-Doo;Park, Eun-Jung;Kim, Mi-Lim
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.859-866
    • /
    • 2015
  • The purpose of this study was to develop a supplemental healthy food that can help prevent high blood pressure-related diseases caused due to the excessive consumption of sodium in salt. This was achieved by using ion-displacement techniques to produce mineral salt with lower sodium content by using fermented brown rice by-products rich in minerals. Mineral salt containing 2019.2 mg/100 g of potassium, 678.5 mg/100 g of magnesium, 48.7 mg/100 g of calcium, and 19.5 mg/100 g of sodium was obtained by fermenting brown rice by-products to create a culture medium for the mineral salt. Mineral salt containing 1769.7 mg/100 g of potassium, 573.6 mg/100 g of magnesium, 35.3 mg/100 g of calcium, and 19.5 mg/100 g of sodium was obtained by filtering and refining the by-product extract of fermented brown rice. The results showed that when the stream velocity of the instrument used for electrolysis was 200 mL/min and the current and the concentration of the reactive liquid in the purified water chamber were higher, the effect of electrolysis was greater. Ion hot water extraction of the fermented brown rice by-products improved by up to 95% and was collected as purified water within 90 min of the reaction time. Chloride ions with pH 7.4 were produced by mixing sodium hydroxide in a purified saline water chamber with electro-analyzed water. The salt produced in this study contained low sodium, 5.7~30%, as compared to 40% sodium content of the normal salt.

Separation of EPA and DHA from Fish Oil by Solubility Differences of Fatty Acid Salts in Ethanol (에탄올에 대한 지방산염의 용해도 차를 이용한 EPA와 DHA의 농축방법)

  • Han, Dae-Seok;Ahn, Byung-Hak;Shin, Hyun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.430-434
    • /
    • 1987
  • Fatty acid fraction rich in ${\omega}-3$ polyunsaturated fatty acids (${\omega}-3$, PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) could be obtained by saponification of fish oil in ethanol containing alkali hydroxide followed by cooling and filtration of the resultant solution. Fatty acid compositions of fish oil and the concentrates suggest that the ratio of number of double bonds to carbon number in a fatty acid molecule is a more important factor than the degree of unsaturation or the chain length in determining the solubility of fatty acid salts in ethanol. Water content in ethano1 affected significantly the efficiency of the separation with respect to yield and content of EPA and DHA in the concentrates; the lower the water content, the higher the efficiency. It was, however, influenced little by cooling procedure and temperature which the saponified solution experienced during the crystallization. Under an optimal condition, the contents of EPA and DHA in the concentrate increased by 2.4 and 2.5 times, respectively, as compared with those in sardine oil.

  • PDF

A Study on the Processing of Sardine Protein Concentrate with Good Rehydration Capacity -2. Changes of Quality in Sardine Protein Concentrate during Storage and its Utilization- (복원력이 좋은 정어리 단백질 농축물의 가공 -2. 정어리 단백질 농축물의 저장안정성 및 이용-)

  • LEE Seung-Won;JOO Dong-Sik;KIM Jin-Soo;AHN Chang-Bum;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.2
    • /
    • pp.144-151
    • /
    • 1991
  • Quality stability and utilization of sardine protein concentrates were investigated. pH, water activity and amino-nitrogen contents of autoclaved and boiled products were little changed during the storage of 60 days. Available lysine contents of the both products at the initial stage of storage were 5.58g/16g-N and 5.69g/16g-N, respectively. But the available lysine contents and digestibility of the both products decreased slightly with increasing of storage time. Lipophilic and hydrophilic brown pigment formation of the both products increased during storage of 60 days, but peroxide value(POV) and thiobarbituric acid(TBA) value decreased. Total amino acid contents of the both products were in the range of $88.99{\~}89.90g/16g-N$, and the predominant ones were glutamic acid, aspartic acid, leucine and lysine. From the sensory scores of model snack, it is concluded that the sardine protein concentrate can be used as a source material for snack.

  • PDF