DOI QR코드

DOI QR Code

전기투석을 이용한 현미부산물로부터의 미네랄성분 추출 및 나트륨감량형 미네랄 소금 제조

Mineral extraction from by-products of brown rice using electrodialysis and production of mineral salt containing lower sodium

  • 노남두 (대구한의대학교 대학원 한방식품학과) ;
  • 박은정 (위덕대학교 산업기술연구소) ;
  • 김미림 (대구한의대학교 한방식품조리영양학부)
  • No, Nam-Doo (Department of Herbal Food Science, Graduate School of Daegu Hanny University) ;
  • Park, Eun-Jung (Science and Engineering Research Institute, Uiduk University) ;
  • Kim, Mi-Lim (Department of Herbal Food Cuisine and Nutrition, Daegu Hanny University)
  • 투고 : 2015.10.13
  • 심사 : 2015.11.16
  • 발행 : 2015.12.30

초록

무기이온이 풍부한 생식물 중 버려지는 부산물을 이용하여 미네랄 확보를 위한 발효최적조건을 설정하고 발효물에 함유된 미네랄 여과 및 정제 조건을 확립하였다. 생식물 가공 후 부산물을 활용하여 다량의 미네랄을 확보하고, 생식물 미네랄 배지조성을 위하여 백미 도정 후의 현미부산물인 미강을 고체 발효시켜 열수추출한 결과 칼륨 2,019.2 mg/100 g을 포함한 미네랄을 얻을 수 있었다. 추출물에 대한 순차적인 여과로 칼륨 1,769.70 mg/100 g을 포함한 미네랄을 확보하여 정제한 후 미네랄을 염수와 치환하기 위한 조건을 확립하기 위하여 유량과의 상관관계를 알아본 결과 유량이 변화하여도 전기투석효과에 영향이 없었으며, 유속이 200 mL/L로 빠를 때 생산제품인 정제수실 반응액이 농도가 낮게 나타났다. 인가전류와의 상관관계에서는 전류를 높게 인가할수록 전기투석효과가 높게 나타났고, 그 증가곡선도 역포물선으로 인가전류가 높을수록 효율이 높음을 나타냈다. 시간과의 상관관계 결과 90분 이내에 95%의 추출액 이온이 정제수로 회수 되었으며 비례적으로 추출 이온별 농도의 변화가 있었다. 정제수실의 이온 농축수에 정제염수실에서 조성된 수산화나트륨을 혼합하여 pH 7.4 의 안전한 염화화합물을 조성할 수 있게 되었다. 전기투석 공정의 원리를 이용하여 생식물 발효 조성액에 함유된 미네랄을 정제염수와 이온치환하여 나트륨 함량 40% 대비 최저 5.7%~최고 30%까지 나트륨이 감량된 소금을 제조하여 미네랄 저염소금 개발 가능성을 확인할 수 있었다.

The purpose of this study was to develop a supplemental healthy food that can help prevent high blood pressure-related diseases caused due to the excessive consumption of sodium in salt. This was achieved by using ion-displacement techniques to produce mineral salt with lower sodium content by using fermented brown rice by-products rich in minerals. Mineral salt containing 2019.2 mg/100 g of potassium, 678.5 mg/100 g of magnesium, 48.7 mg/100 g of calcium, and 19.5 mg/100 g of sodium was obtained by fermenting brown rice by-products to create a culture medium for the mineral salt. Mineral salt containing 1769.7 mg/100 g of potassium, 573.6 mg/100 g of magnesium, 35.3 mg/100 g of calcium, and 19.5 mg/100 g of sodium was obtained by filtering and refining the by-product extract of fermented brown rice. The results showed that when the stream velocity of the instrument used for electrolysis was 200 mL/min and the current and the concentration of the reactive liquid in the purified water chamber were higher, the effect of electrolysis was greater. Ion hot water extraction of the fermented brown rice by-products improved by up to 95% and was collected as purified water within 90 min of the reaction time. Chloride ions with pH 7.4 were produced by mixing sodium hydroxide in a purified saline water chamber with electro-analyzed water. The salt produced in this study contained low sodium, 5.7~30%, as compared to 40% sodium content of the normal salt.

키워드

참고문헌

  1. Kim YS (2003) Functionality of fermented rice bran and its utilization. Ministry of Agriculture, Seoul, Korea, p 31-32
  2. Jang KH, Byun GI, Park SH, Kang WW (2008) Dough properties and bread qualities of wheat flour supplemented with rice bran. Korean J Food Preserv, 15, 209-213
  3. Jung EH, Hwang IK, Ha TY (2010) Properties and antioxidative activities of phenolic acid concentrates of rice bran. Korean J Food Sci Technol, 42, 593-597
  4. Bae SM, Kim JH, Cho CW, Jeong TJ, Yoon HS, Byun MW, Lee SC (2002) Effect of $\gamma$-irradiation on the antioxidant activity of rice hull, rice bran and bran. J Korean Soc Food Sci Nutr, 31, 246-250 https://doi.org/10.3746/jkfn.2002.31.2.246
  5. Chae GY, Kwon RH, Jang MW, Kim MJ, Ha BJ (2011) Whitening and antioxidative effect of rice bran fermented by Bacillus subtilis. J Soc Cosmet Scientists Korea, 37, 153-159
  6. Kim DJ, Choi SM, Kim HY, Kim JH, Ryu SN, Han SJ, Hong SG (2011) Evaluation of biological activities of fermented rice bran from novel black colored rice cultivar SuperC3GHi. Korean J Crop Sci, 56, 420-426 https://doi.org/10.7740/kjcs.2011.56.4.420
  7. Vander AJ, Sherman JH, Luciano DS (1990) Human Physiology. 5th ed. McGraw Hill Publishing Co., New York, NY, USA, p 471-512
  8. Ha JO, Park KY (1998) Comparison of mineral contents and external structure of various salts. J Korean Soc Food Sci Nutr, 27, 413-418
  9. Son SM, Heo KY (2002) Salt intake and nutritional problems in Korea. Korean J Commun Nutr, 7, 381-390
  10. Chung JH, Mok CK, Lim SB, Woo GJ, Baek HH, Park YS (2002) Desalination of traditional soy sauce using electrodialysis. Korean J Food Sci Technol, 34, 811-817
  11. Meyer KH, Strauss W (1940) Membrane permeability. VI. On the passage of electric current through selective membranes. Helv Chim Acta, 23, 795-800 https://doi.org/10.1002/hlca.19400230199
  12. Juda W, McRae WA (1950) Coherent ion exchange gels and membranes. J Am Chem Soc, 72, 1044-1053 https://doi.org/10.1021/ja01158a528
  13. Choi KH (1993) Desalination of seawater using membrane separation processes. Memb J, 3, 51-59
  14. Borgardts P, Krischke W, Trosch W (1994) Combined resource recovery and wastewater treatment through the use of membrane separation process using the example of lactic acid production from whey permeate. Chem Ing Tech, 66, 1270-1271
  15. Oh SW, Nam EJ, Jo JH, Kim EM, Kim YM (1997) Chemical changes during desalting of fish sauces using electrodialyzer. Korean J Food Sci Technol, 29, 992-998
  16. Kim SK, Lee EH, Oh HG (1987) Processing in practice of membrane separation technique in food industry. Ref Eng Air Con, 6, 16-30
  17. Nomura Y, Yamamoto K, Ishizaki A (1991) Factor affecting lactic acid production rate in the built-in electrodialysis fermentation and approach to high speed batch culture. J Ferment Bioeng, 71, 450-452 https://doi.org/10.1016/0922-338X(91)90263-G
  18. Park PJ, Lee SH, Kim SK (2000) Desalination of boiled oyster extract by electrodialysis. Korean J Biotechnol Bioeng, 15, 167-173
  19. Chung JH, Mok CK, Lim SB, Woo GJ (2002) Desalination of traditional soy sauce using electrodialysis. Korean J Food Sci Technol, 34, 811-817
  20. Taddei C, Daufin G, Aimar P, Sanchez V (1991) Role of some whey components on mass transfer in ultrafiltration. Biotechnol Bioeng, 38, 528 https://doi.org/10.1002/bit.260380511
  21. Patel PN, Mehaia MA, Cheryan M (1987) Cross-flow membrane filtration of yeast suspensions. J Biotechnol, 5, 1-5 https://doi.org/10.1016/0168-1656(87)90066-6
  22. Kroner KH, Schutue H, Kula R (1984) Cross-flow filtration in the downstream processing of enzymes. Process Biochem, 19, 67-71
  23. Scott JA (1988) Application of cross-flow filtration to cider fermentation. Process Biochem, 23, 146-152
  24. Nagata N, Herouvis KJ, Dziewulski DM, Belfort G (1989) Crossflow membrane microfiltration of a bacterial fermentation broth. Biotechnol Bioeng, 34, 447-451 https://doi.org/10.1002/bit.260340405
  25. Kim SG, Han CW, Kim HS, Jeon KY, Choi YI (1994) A study on the separation of electrolyte from amino acid solution through electrodialysis. Membrane J, 4, 163-170
  26. Ogutveren UB, Koparal S, Ozel E (1997) Electrodialysis for the removal of copper ions from wastewater. J Environ Sci Health, 32, 749-761