• Title/Summary/Keyword: 나일론66

Search Result 31, Processing Time 0.026 seconds

A study on the mechanical properties of reinforced Nylon66 for glass fiber type and its orientation (나일론66에서 유리섬유의 종류 및 애향에 따른 기계적 물성 연구)

  • Ryu, J.B.;Lyu, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.374-377
    • /
    • 2009
  • Glass fiber reinforced nylon has been used in many plastic industries. Mechanical properties of reinforced plastics depend upon types of glass fiber as well as loading of glass fiber. Tensile properties of glass fiber reinforced nylon66 have been studied for different glass fiber types and sizes. Types of glass fibers were circular and flat, and diameters were 7, 10, and 13 micrometers. Orientations of glass fibers in the matrix of nylon66 have been analyzed through X-ray CT. Tensile specimens were prepared by cutting out of square plates of $100{\times}100{\times}3mm$ with different angles such as 0, 45, and $90^{\circ}$ to the flow direction. As the loading of glass fiber increases to 45 wt% tensile strength increases up 2.5 times compare with neat nylon66. Anisotropic tensile strength has been observed and minimum tensile strength was measured in the specimen cut from perpendicular to the flow direction.

  • PDF

Efficient Microwave-assisted Deoxydehydration (DODH) Reactions: Synthesis of Adipic Acid from Galactose (마이크로웨이브를 이용한 효율적인 탈산소탈수(DODH) 반응: 갈락토스 유래 아디픽산의 합성)

  • Shin, Nara;Kwon, Sohyun;Kim, Young Gyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.165-170
    • /
    • 2017
  • An efficient synthetic process for bio-based adipic acid, a monomer for nylon 66, was developed from galactose. Galactaric acid, prepared from a mild oxidation of galactose using a Pt catalyst, was successfully converted to muconate, a key intermediate for adipic acid, by an efficient microwave-assisted DODH (deoxydehydration) reaction. The high efficiency of the microwave-assisted reaction greatly reduced the overall reaction time to 30 min. and resulted in an excellent yield of 97% of muconate. The catalytic hydrogenation of muconate followed by the acidic hydrolysis successfully produced the desired adipic acid in high purity after recrystallization.

Dyeing and Antimicrobial Properties of Cellulose and Nylon Fabrics Treated with Artemisia Extracts (셀룰로오스와 나일론 직물의 쑥 추출물에 대한 염색성과 항균성)

  • Shin, Seung-Yeop;Chung, Haewon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.8
    • /
    • pp.1130-1138
    • /
    • 2013
  • We examined dyeing properties using cotton, Tencel, general nylon 66 and hollow nylon 66 treated with aqueous and ethanol extracts without mordant. The antimicrobial properties of fabrics treated with Artemisia extracts against gram positive Staphylococcus aureus (S. aureus) and gram negative Klebsiella pneumonia (K. pneumonia) were also examined. The dying solution concentrations were determined from a calibration curve of the concentration and absorbance of Artemisia extracts. FTIR spectra confirmed that antimicrobial components and colorants (such as 1,8-cineol, thujone, caffeoylquinic acid and chlorophyll) were more present in ethanol extract than in aqueous extract. Nylons had higher $a^*$ and $b^*$, and lower $L^*$ values than cellulose fabrics dyed with aqueous solutions of Artemisia extracts; however, the dyed nylon fabrics were brown. Fabrics dyed with ethanol-extract added solutions were greener and had higher antimicrobial properties than those dyed with aqueous solutions; however, they faded and lost their antimicrobial properties after laundering. Fabrics regained their antimicrobial properties (especially against S. aureus) by the spraying of Artemisia ethanol extract; therefore, the application of Artemisia ethanol extract onto underwear is expected to relieve atopic dermatitis.

Numerical Study on the Sealing Safety of a Valve Packing in a LPG Cylinder (LPG 용기용 밸브패킹의 누설안전에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.34-39
    • /
    • 2007
  • In this paper, the FEM result has been presented for a sealing safety between a valve packing and a valve seat during a open and close operation in a LPG cylinder. The sealing operation of a LPG valve is completed when the valve packing in which is made by a nylon-66 polymer is to stop a LP gas flow, which flows out from the outlet of a brass pipe in a LPG cylinder. The contact sealing mechanism of the valve may be classified by a flat contact of an unused valve packing and a circular groove contact of an used valve packing in a current LPG valve. Based on the FEM and experimental investigations the sealing force, 4.9 MPa for a flat contact mode of the unused valve packing is a little high compared to that of the used valve packing, which shows a circular groove contact geometry against a valve seat. But these sealing pressures for two contact modes are very low compared to the ultimate strenath 83 MPa of the nylon-66 and this may be designed with a excess strength of the valve.

  • PDF

A Study about the Strength and Microstructure of Hardened Cement Pastes Including Nanofibers (나노 섬유를 혼합한 시멘트 페이스트의 미세구조와 강도에 대한 연구)

  • Nguyen, Tri N.M;Kim, Jung Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.177-182
    • /
    • 2020
  • In this study, the effect of nanofibers in cement pastes on the compressive and tensile strength of hardened cement pastes was studied. Two types of nanofibers, nylon 66 nanofibers and carbon nanotube-nylon 66 hybrid nanofibers, were manufactured by electrospinning methodology and mixed in cement powder respectively. The specimens for experiments were prepared by water to cement ratio of 0.5 and cured in water for 28 days. The effect of nanofibers on the increase of the compressive and tensile strength were confirmed by the experimental results. The well-linking effect of nanofibers in the microstructure of the hardened cement pastes has been found by scanning electron microscope (SEM) analysis and well-explained for the increase in mechanical strength. Besides, field emission transmission electron microscope (FE-TEM) analysis and thermal gravimetric analysis (TGA) have also been conducted to analyze the properties of nanofibers as well as the microstructure of the hardened modified cement pastes.

The Effects of Electron Beam Irradiation on Thermal and Mechanical Properties of Electrospun Nylon 66 Nano-web (전기방사된 나일론66 나노웹의 열적·기계적 특성에 전자선 조사가 미치는 영향)

  • Jeun, Joon Pyo;Kang, Hyo-Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.69-73
    • /
    • 2011
  • Polyamide 66 (PA66) nanofibers with Triallyl cyanurate (TAC) were obtained by electrospinning of formic acid and chloroform solution. Electron beam irradiation of PA66 nanofiber with and without TAC was carried out over a range of absorbed doses (20~100 kGy) in nitrogen. The characterization of the irradiated PA66 nanofibers and PA66 nanofibers with TAC was done by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA) and universal testing machine (UTM). The results of the SEM image analysis confirmed that the morphology of PA66 nanofibers was not altered by electron beam. The amount of TAC in PA66 nanofiber with TAC was identified by $^1H-NMR$ analysis. The degradation temperature of PA66 nanofibers with TAC at an absorbed dose of 20~100 kGy was higher than the irradiated PA66 nanofiber without TAC. On the other hand, the decreasing rate of modulus of irradiated PA66 nanofibers with TAC was less than PA66 nanofibers.

The Effect of Chitosan-Pretreatment on the Cochineal Dyeing of Cotton, Silk, Nylon, and Polyester Fabrics (키토산 전처리(前處理)가 면(綿), 견(絹), 나일론, 폴리에스테르의 코치닐염색(染色)에 미치는 효과(效果))

  • Jeon, Dong-Won;Kim, Jong-Jun;Kim, Sun-Hwa
    • Journal of Fashion Business
    • /
    • v.7 no.4
    • /
    • pp.57-66
    • /
    • 2003
  • Cochineal dyeing was applied to natural fiber fabrics, cotton and silk fabrics, and synthetic fiber fabrics, nylon and polyester fabrics. Chitosan-pretreatment was applied to the fabrics in order to investigate the effect of chitosan treatment on the dyeing behavior. The effect of chitosan treatment on the mordanting was also investigated by incorporating Cu-mordant on the chitosan-treated or chitosan-untreated fabrics during the dyeing process.

Characterization of Electrospun Nylon 66 Fiberwebs (전기방사 나일론 66 섬유웹의 특성화)

  • Lee, Young-Soo;Park, Sung-Shin;Lee, Chung-Jung;Joo, Chang-Whan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.165-168
    • /
    • 2003
  • Nylon was the first commercialized synthetic fiber. It is a polyamide, derived from a diamine and dicarboxylic acid. The nylon fiber has outstanding durability and excellent physical properties such as stiffness, wear and abrasion resistance, friction coefficient and chemical resistance. Due to these properties of nylon 66, nano-sized fibers are produced by electrospinning method in this study. During the past years the nylon 66 fibers have been prepared by conventional melt spining. (omitted)

  • PDF

Characterization of Nylon 66 Non-woven via Electrospinning (전기방사된 나일론 66 부직포의 특성)

  • Kim, Chi-Hun;Jung, Yoon-Ho;Kim, Hak-Yong;Ryu, Young-Jun;Lee, Douk-Rae;Park, Soo-Jin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.265-266
    • /
    • 2003
  • The first developed engineering plastic and synthetic fiber, Nylon has been widely used because of its excellent properties. Recently, electrospinning has been gradually spotlighted as a different method of producing fibers, in which fibers of submicron can be consistently produced [1,2]. In this work, we have prepared nanofiber non-woven from Nylon 66 of which properties were investigated. The morphological properties of Nylon 66 non-woven was observed by SEM. (omitted)

  • PDF

Effect of Cooling Rate on Mechanical Properties of Carbon/Nylon66 Composites (카본/나일론 복합재료의 냉각속도에 따른 기계적 특성변화)

  • 홍순곤;변준형;황병선;강범수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.122-125
    • /
    • 2001
  • The objective of this research is to develop hybridized yarns for thermoplastic composites, and to examine tile effect of cooling rate on mechanical properties of the composites. The co-braided yarn utilizing carbon fibers as reinforcements and Nylon 66 fibers as matrix materials has been fabricated. Thermoplastic composites have been manufactured by the hot-press forming process. For the processing conditions, cooling rates of $-2.5^{\circ}C$/min and $-60^{\circ}C$/min have been considered. Three-point bending test and losipescu shear test were performed to investigate the effect of the cooling rate and the surface treatment of carbon fibers. SEM photographs were used to investigate the fracture surfaces of the tested samples. The cooling rate of $-60^{\circ}C$/min resulted in the higher strength and elastic modulus for bending and shear tests. The composites of the epoxy-sized carbon fibers showed the lowest strength due to the degradation of the sizing material during the thermoforming process.

  • PDF