Browse > Article
http://dx.doi.org/10.14478/ace.2016.1122

Efficient Microwave-assisted Deoxydehydration (DODH) Reactions: Synthesis of Adipic Acid from Galactose  

Shin, Nara (Department of Chemical and Biological Engineering, Seoul National University,)
Kwon, Sohyun (Department of Chemical and Biological Engineering, Seoul National University,)
Kim, Young Gyu (Department of Chemical and Biological Engineering, Seoul National University,)
Publication Information
Applied Chemistry for Engineering / v.28, no.2, 2017 , pp. 165-170 More about this Journal
Abstract
An efficient synthetic process for bio-based adipic acid, a monomer for nylon 66, was developed from galactose. Galactaric acid, prepared from a mild oxidation of galactose using a Pt catalyst, was successfully converted to muconate, a key intermediate for adipic acid, by an efficient microwave-assisted DODH (deoxydehydration) reaction. The high efficiency of the microwave-assisted reaction greatly reduced the overall reaction time to 30 min. and resulted in an excellent yield of 97% of muconate. The catalytic hydrogenation of muconate followed by the acidic hydrolysis successfully produced the desired adipic acid in high purity after recrystallization.
Keywords
adipic acid; DODH reaction; MTO catalyst; bioplastics; bio-based nylon 66;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. H. Jung, Bioplastics, 1-152, Research and Policy Center for Chemical Technology, KRICT, Korea (2010).
2 J. Jegal, K. M. Cho, and B. K. Song, Research trends of biomass based polymeric materials, Polym. Sci. Technol., 19, 307-317 (2008).
3 T. R. Boussie, E. L. Dias, Z. M. Fresco, U. J. Murphy, V. J. Shoemaker, R. Archer, and H. Jiang, Adipic acid composition, WO 2011/108051 A1 (2011).
4 A. M. Unrau, Constitution of a galactomannoglycan from the seed of Leucaena glauca, J. Org. Chem., 24, 3097-3263 (1961).
5 H. Howell and G. S. Fisher, The dissociation constants of some of the terpene acid, J. Am. Chem. Soc., 80, 6316-6319 (1958).   DOI
6 S. Qu, Y. Dang, M. Wen, and Z. Wang, Mechanism of the methyltrioxorhenium-catalyzed deoxydehydration of polyols: A new pathway revealed, Chem. Eur. J., 19, 3827-3832 (2013).   DOI
7 P. Liu and K. M. Nicholas, Mechanism of sulfite-driven, $MeReO_3$ catalyzed deoxydehydration of glycols, Organometallics, 32, 1821-1831 (2013).   DOI
8 S. Liu, A. Senocak, J. L. Smeltz, L. Yang, B. Wegenhart, J. Yi. H. I. Kenttamaa, E. A. Ison, and M. M. Abu-Omar, Mechanism of MTO-catalyzed deoxydehydration of diols to alkenes using sacrificial alcohols, Organometallics, 32, 3210-3219 (2013).   DOI
9 T. R. Boussie, E. L. Dias, Z. M. Fresco, U. J. Murphy, V. J. Shoemaker, R. Archer, and H. Jiang, Composition of matter, US Patent 0218318 A1 (2011).
10 S. Vlitiri, G. Chapman, I. Ahmad, and K. M. Nicolas, Rheniumcatalyzed deoxydehydration of glycols by sulfite, Inorg. Chem., 49, 4744-4746 (2010).   DOI
11 I. Ahmad, G. Chanpmann, and K. M. Nicholas, Sulfite-driven, oxorhenium-catalyzed deoxydehydration of glycols, Organometallics, 30, 2810-2818 (2011).   DOI
12 G. Chapman Jr. and K. M. Nicholas, Vanadium-catalyzed deoxydehydration of glycols, Chem. Commun., 49, 8199-8201 (2013).   DOI
13 G. K. Cook and M. A. Andrews, Toward nonoxidative routes to oxygenated organics: stereospecific deoxydehydration of diols and polyols to alkenes and allylic alcohols catalyzed by the metal oxo complex $(C_5Me_5)ReO_3$, J. Am. Chem. Soc., 118, 9448-9449 (1996).   DOI
14 J. M. H. Dirkx and H. S. van der Vaan, The oxidation of gluconic acid with platinum on carbon as catalyst, J. Catal., 67, 14-20 (1981).   DOI
15 J. E. Ziegler, M. J. Zdilla, A. J. Evans, and M. M. Abu-Omar, $H_2$-driven deoxygenation of epoxides and diols to alkenes catalyzed by methyltrioxorhenium, Inorg. Chem., 48, 9998-10000 (2009).   DOI
16 E. Arceo, J. A. Eiiman, and R. G. Bergman, Rhenium-catalyzed didehydroxylation of vicinal diols to alkenes using a simple alcohol as a reducing agent, J. Am. Chem. Soc., 132, 11408-11409 (2010).   DOI
17 J. O. Metzger, Catalytic deoxygenation of carbohydrate renewable resources, ChemCatChem, 5, 680-682 (2013).   DOI
18 M. Shiramizu and F. D. Toste, Expanding the scope of biomass-derived chemicals through tandem reactions based on oxorhenium-catalyzed deoxydehydration, Angew. Chem. Int. Ed., 52, 12905-12909 (2013).   DOI
19 X. Li, D. Wu, T. Lu, G, Yi, H. Su, and Y. Zhang, Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration, Angew. Chem. Int. Ed., 53, 1-6 (2014).   DOI
20 V. Canale, L. Tonucci, M. Bressan, and N. d'Alessandro, Deoxydehydration of glycerol to allyl alcohol catalyzed by rhenium derivatives, Catal. Sci. Technol., 4, 3697-3704 (2014).   DOI
21 L. Hills, R. Moyano, F. Montilla, A. Pastor, A. Galindo, E. Alvarez, F. Marchetti, and C. Pettinari, Dioxomolybdenum (VI) complexes with acylpyrazolonate ligands: Synthesis, structures, and catalytic properties, Eur. J. Inorg. Chem., 19, 3352-3361 (2013).
22 J. R. Dethlesen, D. Lupp, B. Oh, and P. Fristrup, Molybdenum-catalyzed deoxydehydration of vicinal diols, ChemSusChem, 7, 425-428 (2014).   DOI
23 S. Li and Y. Zhang, Highly efficient process for the conversion of glycerol to acrylic acid via gas phase catalytic oxidation of an allyl alcohol intermediate, ACS Catal., 6, 143-150 (2016).   DOI
24 J. R. Dethlefsen and P. Fristrup, Rhenium-catalyzed deoxydehydration of diols and polyols, ChemSusChem, 8, 767-775 (2015).   DOI
25 J. M. H. Dirkx and H. S. van der Vaan, The oxidation of glucose with platinum on carbon as catalyst, J. Catal., 67, 1-13 (1981).   DOI
26 S. Raju, M. Moret, and R. J. M. K. Gebbink, Rhenium-catalyzed dehydration and deoxydehydration of alcohols and polyols: Opportunities for the formation of olefins from biomass, ACS Catal., 5, 281-300 (2015).   DOI
27 S. C. Ameta, P. B. Punjabi, R. Ameta, and C. Ameta, Microwave-assisted Organic Synthesis: A Green Chemical Approach, Apple Academic Press, Oakville, Canada (2015).
28 P. Lidstrom, J. Tierney, B. Wathey, and J. Westman, Microwave assisted organic synthesis-a review, Tetrahedron, 57, 9225-9233 (2001).   DOI
29 J. Jacob, Microwave assisted reactions in organic chemistry: A review of recent advances, Int. J. Chem., 4, 29-43 (2012).
30 Y. M. Zhang, P. Wang, N. Han, and H. F. Lei, Microwave irradiation: A novel method for rapid synthesis of D, L-Lactide, Macromol. Rapid Commun., 28, 417-421 (2007).   DOI
31 C. -H. Hong, B. U. Nam, and D. -S. Han, The present situation and prediction of biomass-based nylon, Polym. Sci. Technol., 21, 321-325 (2010).
32 M. T. Mussser, Adipic acid, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany (2000).
33 W. Niu, M. Draths, and J. W. Frost, Benzene-free synthesis of adipic acid, Biotechnol. Prog., 18, 201-211 (2002).   DOI
34 T. R. Boussie, E. L. Dias, Z. M. Fresco, U. J. Murphy, V. J. Shoemaker, R. Archer, and H. Jiang, Production of adipic acid and derivatives from carbohydrate-containing materials, US Patent 0317823 A1 (2010).
35 T. R. Boussie, E. L. Dias, Z. M. Fresco, and U. J. Murphy, Production of glutaric acid and derivatives from carbohydrate-containing materials, US Patent 0317825 A1 (2010).