• Title/Summary/Keyword: 나선관

Search Result 84, Processing Time 0.03 seconds

A numerical study on the flow in an eccentric annulus (편심 환형관내 유동에 대한 수치 해석적 연구)

  • Woo, Nam-Sub;Seo, Byung-Taek;Bae, Kyung-Su;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1863-1868
    • /
    • 2004
  • The present study concerns a computational study of fully developed laminar flow of a Newtonian fluid through an eccentric annulus with a combined bulk axial flow and inner cylinder rotation. This study considers the identical flow geometry as in the calculation of Escudier et $al.^{(3)}$ An unexpected feature of the calculations for eccentricity ${\varepsilon}$)0.7 is the appearance of a second peak in the axial velocity, located in the narrowing gap. The distribution of the axial component of the surface shear stress has a maximum in the narrowing gap and a minimum in the widening gap.

  • PDF

Spiral Casing of a Volute Centrifugal Pump - Effects of the Cross Sectional Shape - (볼류트 원심펌프의 스파이럴 케이싱 - 단면 형상의 영향 -)

  • Jin, Hyun Bae;Kim, Myung Jin;Son, Chang Ho;Chung, Wui Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.28-34
    • /
    • 2013
  • Centrifugal pump consists of a axis, a impeller and a spiral casing. The impeller is the most important component in centrifugal pump. But to minimize flow loss in discharge passage including spiral casing, the shape of spiral casing is very important also. So, to investigate the effect of shape of the spiral casing on performance curve of pump, the characteristics of spiral casing were studied through numerical analysis for centrifugal pump used on industry field. From the results the rectangular model was showed more loss than the others because of asymmetric flow field.

Development of an Unmanned Test System Based on Forklift for Mast Operation Durability (지게차 마스트 작동내구를 위한 실차 기반 무인시험장치 개발)

  • Cho, Jae-Hong;Na, Seon-Jun;Kim, Min-Seok;Park, Myeong-Kwan
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.70-76
    • /
    • 2022
  • In this paper, we develops an unmanned test system for the purpose of realizing an actual forklift-based test-bed for the operation durability of the forklift mast. First, two robot actuators were applied to the lever to replace lever manipulation of the operator. For detecting the height of the fork and the tilt angle of the mast, the laser displacement sensor and the inclinometer were installed to the forklift. Next, the embedded control system was used to control the robot actuator with reference to test mode. Experimental evaluation verified that developed test system was effective and practical for the viewpoint of the repeatability of the test mode.

Development of 3th Effects Evaporative desalination system for Solar Desalination System (태양에너지 해수담수화를 위한 3중 효용 증발식 담수기 개발)

  • Hwang, In-Seon;Joo, Hong-Jin;Yun, Eung-Sang;Kwak, Hee-Youl
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.201-201
    • /
    • 2010
  • The evaporative desalination system with solar energy would be the efficient and attractive method to get fresh water. This study was described the development of Multi Effect Distillation(MED) with solar energy desalination system. The system was designed and manufactured Multi effect distillation on the capacity of $3m^3$/day. The experimental apparatus consists mainly of ejector pump, Hot water pump, flow meter, demister, cooler, evaporator and condenser. Evaporator and condenser were made Shell&Tube Heat Exchanger type with corrugated tube. The experimental variables were chosen $75^{\circ}C$ for hot water inlet temperature, 40, 60 and $80{\ell}$/min for hot water inlet volume flow rate, 6.0 and $8.0{\ell}$/min for evaporator feed seawater flow rate, $18^{\circ}C$ for sea water inlet temperature to cover the average sea water temperature and the salinity of sea water is measured about 33,000 PPM (parts per million). for a year in Korea. This study was analyzed the results of thermal performance of Multi Effect Distillation. The results are as follows, The experimental Multi effect distillation is required about 40 kW heat source for production of $3m^3$/day fresh water. Various operating flow rate was confirm in the experiments to get the optimum design data and the results showed that the optimum total flow was $8.0{\ell}$/min. Comparison of Single Effect Distillation with Multi Effect Distillation showed MED is at least more than double of SED.

  • PDF

Structural Characteristics Evaluation of the Injection Spiral Blade Used in Small Wind Turbines under Operating Conditions (운전하중 조건에서 소형 풍력 발전기용 사출 나선형 블레이드 구조특성 평가)

  • Gil, Young-Uk;Jo, Young-Kwan;Ji, Ho-Seong;Yang, Hyoung-Keun;Baek, Joon-Ho;Je, Duk-Geun;Jeong, Ho-Seung;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.38-46
    • /
    • 2020
  • The purpose is to evaluate the structural characteristics of 750 mm diameter injection spiral blades under various operating conditions. A fiber-glass reinforced polypropylene material was employed to the injection blades, and mechanical tests on two kinds of glass-reinforced polypropylene were performed to evaluate the mechanical properties and to select a suitable candidate material. Also, three kinds of spiral blade geometries were studied to observe the influence of fixing rods between blades. For this, structural analyses were conducted to understand the role of fixing rods under a range of rotating speed. In addition, modal analysis was performed to confirm the resonance in the operating speed range. One-way fluid-structure interaction (FSI) analysis was carried out to know its mechanical integrity under dangerous wind speed conditions. Through this work, the structural characteristics of the proposed spiral blade geometries were studied under various operating conditions, and the requirements of mechanical properties of blades were determined.

A Probabilistic Analysis on Logarithmic-Spiral Failure of Slope in Consideration of Load Variance (하중의 분산성을 고려한 대수누선사면 파괴의 확률론적 해석)

  • 정성관;권무남
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.39-50
    • /
    • 1988
  • Until now, most probabilistic approaches to the slope stability analysis have been accomplished on the arc failure surface without load. In this study, the relationships between the probability of failure and the safety factor are investigated when the shape of failure is logarithmic spiral on the homogeneous slope with ground water level, the probability distributions of the load and the strength parameter of soil being assumed as normal distribution, log-normal distribution and beta distribution. The results obtained are as follows; 1. For the same safety factor, the design of slope is more reasonable by using the probability of failure than by the safety factor because the probability of failure is increased as the coefficient of variation is increased. 2, The safety factor is more reasonably determined by the coefficient of variation of the strength parameter than by the field condition when the safety factor is applied to design of slope.

  • PDF

A Study on the Thermoacoustic Oscillation of an Air Column (기주의 열음향진동에 관한 연구)

  • 권영필;이병호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.253-261
    • /
    • 1987
  • Thermoacoustic oscillation of an air column induced by heated wires is investigated analytically and experimentally. Acoustic power generation from a single heater wire is estimated based on the result of heat transfer analysis and expressed in terms of the efficiency factor indicating the conversion efficiency from heat to acoustic energy. It is shown that the efficiency factor becomes maximum when the wire radius is the order of the coustic boundary layer thickness and the flow velocity is close to the thermal diffusion velocity. Onset condition of the column oscillation is obtained by equating the acoustic power generation at the heater to the power loss due to thermoviscous dissipation at the tube wall and the convection and radiationloss at the open ends of the tube. In estimating the acoustic power generation, the heater is treated as a stretched single wire by correcting the flow velocity to take into account the interactions between adjacent heater wires. Experiment is performed by using a spiral heater of 1mm diameter in an air column of 37mm diameter. The heat input to drive the oscillation is measured and compared with the theoretical prediction. A good agreement is found between the theory and experiment, which is regarded as a substantial verification of the present analysis.

Biomimetic Analysis on the Spider Silk Apparatus for Designing the Nanofiber-spinning Nozzle (나노섬유 방사노즐 설계를 위한 거미 실크 방적장치의 생체모사 분석)

  • Moon, Myung-Jin;Kim, Hoon;Park, Jong-Gu
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.67-76
    • /
    • 2012
  • The biomimetic approach on the cuticular spinning nozzles of the major ampullate silk glands in the golden-web spider Nephila calvata has been attempted using various visualizing techniques of light and electron microscopes to improve the design of spinning nozzle for producing synthetic nanofibers spun from electrospinning apparatus. The major ampullate spigot which has the most effective nozzle system to produce nanofibers for dragline silk with high strength and elasticity is connected via the bullet type spigot on anterior spinneret with flexible terminal segment. The excretory duct which transports the liquid silk feedstock from ampulla to spigot is divided into 3 limbs by loops back on itself to form an S-shape morphology that is bundled in connective tissue. Final diameter of the nanofibers at nozzle was dramatically reduced by gradual narrowing of duct cuticle less than 10 times comparing to its original size of funnel region. Moreover, the funnel has a characteristic cuticular organization with porous microstructure which seems to be related to water removal from feedstock of silk precursors. High magnification electron micrographs also reveal the presence of the spiral grooves on the surface of the cuticular intima near the valve which presumed to reduce friction during rapid flow of liquid silk.

Cellular Anatomy of Compression Wood and Opposite Wood in a Branch of Taxodium distichum Rich. (낙우송(落羽松)(Taxodium distichum Rich.) 지재(枝材)의 압축이상재(壓縮理想材) 및 대응재(對應材)에 관한 해부학적(解剖學的) 특성(特性))

  • Lee, Phil Woo;Chung, Youn Jib;Kwon, Mi
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.3
    • /
    • pp.296-302
    • /
    • 1991
  • Compression wood and opposite wood formed in a branch of Taxodium distichum Rich. is described and compared in qualitative and quantitative anatomical aspects. The qualitative features of compression wood appeared to differ from those of opposite wood in very gradual tracheid transition from earlywood to latewood, roundish tracheid shape on cross surface, tracheid tip distortion on radial surface, and existence of intercellular spaces and helical cavities. In quantitative features, compression wood tracheids showed shorter lengths than opposite wood. The ray density and the number of uniseriate rays were greater in compression wood than in opposite wood but the height of uniseriate rays in compression wood was smaller than in opposite wood.

  • PDF

Performance Characteristics Analysis of a Three Dimensional Asymmetric Pintle Nozzle Induced by Connection-Tube Angle and Pintle Stroke Position (비대칭 3차원 핀틀 노즐의 연결관 각도와 핀틀 위치에 대한 성능 특성 해석)

  • Lee, KangMin;Hong, JiSeok;Sung, Hong-Gye;Heo, Junyoung;Jin, Jungkun;Ha, DongSung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.383-387
    • /
    • 2017
  • A three dimensional numerical analysis has been conducted to analyze the effects of a pipe angle, connecting a combustion chamber and a pintle nozzle, and pintle position on pintle nozzle performance. The compressibility correction of $k-{\omega}$ SST turbulent model was implemented to precisely predict the characteristics of complex flow structures inside a supersonic pintle nozzle. Due to an 3-D asymmetric pintle nozzle configuration, complex helical flow streamlines and large flow separations were observed, which resulting in significant nozzle performance losses. As the angle of connection-tube decreases, the coefficient of performance increases and Since the flow structures are evidently changed to the pintle stroke position, the performance characteristics was analyzed.

  • PDF