• Title/Summary/Keyword: 나노 산화철입자

Search Result 56, Processing Time 0.023 seconds

Synthesis of Magnetic Polystyrene-Polyimide Core-Shell Microsphere (자성 폴리스티렌-폴리이미드 Core-Shell 마이크로스피어의 합성)

  • Ahn, Byung-Hyun
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.168-173
    • /
    • 2012
  • Polystyrene-polyimide core-shell microsphere was prepared by dispersion polymerization using poly(amic acid) as the stabilizer. Iron oxide was formed at the microsphere by thermal decomposition of iron pentacarbonyl impregnated in the microsphere. The magnetic polystyrene-polyimide microsphere was monodisperse and the size was about 500 nm. The magnetic polystyrene-polyimide microsphere had 40% of iron oxide, which was identified as $Fe_3O_4$ by X-ray diffraction.

Synthesis of Monodispersed Magnetic Polymer Particle (균일한 자성 고분자 입자의 합성)

  • Ahn, Byung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.316-321
    • /
    • 2008
  • Monodispersed particles of poly(styrene-co-4-vinylpyridine), poly(st-co-4vp) were prepared by soapless emulsion polymerization. Iron oxide was formed on the surface and inside of the poly(st-co-4vp) particles by thermal decompostion of iron pentacarbonyl. The obtained magnetic poly(st-co-4vp) particles was mondispersed and the average size was 250 nm. The magnetic poly(st-co-4vp) particles had 14% of iron oxide, which was identified as $Fe_3O_4$ by XRD. The magnetic poly(st-co-4vp) particles had superparamagnetism according to superconducting susceptometer (SQUID).

Generation and ignition of micro/nano - aluminum particles using laser (레이저를 이용한 마이크로/나노 알루미늄 입자 생성과 점화)

  • Lee, Kyung-Cheol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.429-434
    • /
    • 2012
  • Ignition delay of micro/nano aluminum particles is caused by aluminum oxide shell. The method of minimizing this ignition delay is proposed in the study. Generating and heating of particles are processed at the same time. As soon as heated particles are produced, they immediately contact with oxygen. Chemical reaction is induced on the contact surface instead of crystallization of oxide shell. Finally particles are ignited. Aluminum particles are generated by laser ablation on an aluminum plate using Nd:YAG pulse laser. Injected particles are confirmed through visualization of particles using scattering method. $CO_2$ continuous laser supplies heat to aluminum plate and generated particles. Trace of burning particles is observed in the experiment.

  • PDF

Characterization of Iron Oxide Nanoparticles Synthesized by Flame Synthesis (화염법으로 제조된 산화철 나노입자의 특성평가)

  • Yang, Sang-Sun;Altman, Igor S.;Pikhitsa, Peter V.;Choi, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1162-1165
    • /
    • 2004
  • Size and crystalline phase changes of $Fe_{2}O_{3}$ nanoparticles formed in a $H_{2}/O_{2}$ flame have been investigated. At flame temperatures below $1350^{\circ}C$, the mean particle size increased monotonously with the distance from the burner edge; but in high-temperature flames above $1650^{\circ}C$, it suddenly decreased from 20 nm to ${\sim}3$ nm with the distance from the burner edge. The results of X-ray diffraction and HRTEM showed that this sudden reduction of the size of nanoparticles was accompanied by a partial phase transformation from ${\gamma}$-$Fe_{2}O_{3}$ into ${\alpha}$-$Fe_{2}O_{3}$. We suggest the structural instability due to ${\gamma}-$ to ${\alpha}-phase$ transformation as a mechanism for a rapid fragmentation of 20 nm particles into 3 nm ones.

  • PDF

Photoelectrochemical Performance of Hematite Nanoparticles Synthesized by a DC Thermal Plasma Process (DC 열플라즈마를 이용하여 제조된 산화철 나노입자의 광 전기화학적 물분해 효율 증가연구)

  • Lee, Chulho;Lee, Dongeun;Kim, Sunkyu;Yoo, Hyeonseok;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.306-310
    • /
    • 2015
  • In this research, hematite nanoparticles were synthesized by DC thermal plasma process to increase the overall surface area. The effect of binders on hematite electrodes was investigated by changing the type and composition of binders when preparing electrodes. Nitrogen gas was also added to the DC thermal plasma process in order to dope the hematite with N for enhancing photoelectrochemical properties of hematite nanoparticles. The efficiency of water splitting reaction was measured by linear sweep voltammetry (LSV) under solar simulator. In LSV measurements, the onset potential and maximum current density at a fixed voltage were measured. The durability of electrodes was checked by repeating LSV measurements. CMC (carboxymethyl cellulose) binder with 50 : 1 composition exhibits the highest current density of $12mA/cm^2$ and CMC binder with 20 : 1 composition, showing the initial current density of $3mA/cm^2$, endures 20 times of repetitive LSV measurements. Effects of nitrogen doping on hematite nanoparticles were proven to be insignificant.

Nanoparticle Inducing Device for Effective Drug Delivery System (효과적인 약물전달 시스템을 위한 나노입자 유도 장치)

  • Lee, Chongmyeong;Han, Hyeonho;Jang, Byonghan;Oh, Eunseol;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.102-110
    • /
    • 2017
  • Cancer is one of the most challenging human diseases. Current clinical methods have limitations for early-stage cancer diagnosis and effective therapy. Moreover, current surgical methods to remove tumors are not precise enough and chemotherapy destroys normal tissues as well as malignant tumors, resulting in severe side effects such as hair loss, vomiting, diarrhea, and blood disorders. Recently, nanotechnology using nano-sized particles suggests advanced solutions to overcome the limitations. Various nanoparticles have been reported for more accurate diagnosis and minimized side effects. However, current nanoparticles still show limited targeting accuracy for cancer generally below 5% injection dosage. Therefore, herein we report a new nanoparticle inducing device(NID) to guide the nanoparticles externally by using both variable magnetic fields and blood flows. NID can be a promising approach to improve targeting accuracy for drug delivery using iron oxide nanoparticles.

Characterization of Behavior of Colloidal Zero-Valent Iron and Magnetite in Aqueous Environment (나노크기의 교질상 영가철 및 자철석에 대한 수용상의 거동특성)

  • Lee, Woo Chun;Kim, Soon-Oh;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.95-108
    • /
    • 2015
  • Nano-sized iron colloids are formed as acid mine drainage is exposed to surface environments and is introduced into surrounding water bodies. These iron nanomaterials invoke aesthetic contamination as well as adverse effects on aqueous ecosystems. In order to control them, the characteristics of their behaviour should be understood first, but the cumulative research outputs up to now are much less than the expected. Using zero-valent iron (ZVI) and magnetite, this study aims to investigate the behaviour of iron nanomaterials according to the change in the composition and pH of background electrolyte and the concentration of natural organic matter (NOM). The size and surface zeta potential of iron nanomaterials were measured using dynamic light scattering. Characteristic behaviour, such as aggregation and dispersion was compared each other based on the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory. Whereas iron nanomaterials showed a strong tendency of aggregation at the pH near point of zero charge (PZC) due to electrostatic attraction between particles, their dispersions became dominant at the pH which was higher or lower than PZC. In addition, the behaviour of iron nanomaterials was likely to be more significantly influenced by cations than anions in the electrolyte solutions. Particularly, it was observed that divalent cation influenced more effectively than monovalent cation in electrostatic attraction and repulsion between particles. It was also confirmed that the NOM enhanced the dispersion nanomaterials with increasing the negative charge of nanomaterials by coating on their surface. Under identical conditions, ZVI aggregated more easily than magnetite, and which would be attributed to the lower stability and larger reactivity of ZVI.