DOI QR코드

DOI QR Code

Synthesis of Magnetic Polystyrene-Polyimide Core-Shell Microsphere

자성 폴리스티렌-폴리이미드 Core-Shell 마이크로스피어의 합성

  • Ahn, Byung-Hyun (Department of Material Engineering, Pukyong National University)
  • 안병현 (부경대학교 재료공학과)
  • Received : 2012.04.12
  • Accepted : 2012.04.19
  • Published : 2012.06.30

Abstract

Polystyrene-polyimide core-shell microsphere was prepared by dispersion polymerization using poly(amic acid) as the stabilizer. Iron oxide was formed at the microsphere by thermal decomposition of iron pentacarbonyl impregnated in the microsphere. The magnetic polystyrene-polyimide microsphere was monodisperse and the size was about 500 nm. The magnetic polystyrene-polyimide microsphere had 40% of iron oxide, which was identified as $Fe_3O_4$ by X-ray diffraction.

폴리아미드산을 안정제로 사용한 스티렌의 분산중합에 의해 core-shell 구조를 갖는 폴리스티렌-폴리이미드 core-shell 마이크로스피어를 얻었다. Iron pentacarbonyl을 마이크로스피어에 함침시킨 후 열분해하여 산화철 나노 입자를 갖는 자성 폴리스티렌-폴리이미드 마이크로스피어를 제조하였다. 자성 폴리스티렌-폴리이미드 마이크로스피어의 크기와 구조, 열적 특성 및 자성 특성을 조사하였는데, 자성 폴리스티렌-폴리이미드 마이크로스피어는 크기가 약 500 nm 정도로 균일하였으며 40%의 산화철 나노 입자를 가졌다. 산화철은 X선 회절시험에 의해 $Fe_3O_4$임이 확인되었다.

Keywords

References

  1. K. Sugibayashi, Y. Morimoto, T. Nadai, and Y. Kato, Chem. Pharm. Bull., 25, 3433 (1997).
  2. Y. Haik, V. Pai, and C. J. Chen, J. Magn. Magn. Mater., 194, 254 (1999). https://doi.org/10.1016/S0304-8853(98)00559-9
  3. C. H. Setchell, J. Chem. Technol. Biotechnol. B, 35, 175 (1985). https://doi.org/10.1002/jctb.280350302
  4. M. Shinkai, H. Honda, and T. Kobayashi, Biocatalysis, 5, 61 (1991). https://doi.org/10.3109/10242429109014855
  5. A. Kondo, H. Kamura, and K. Higashitani, Appl. Microbiol. 41, 99 (1994). https://doi.org/10.1007/BF00166089
  6. M. Meza, U. Hafeli, W. Schutt, and M. Zborowski (Eds.), Scientific and Clinical Applications of Magnetic Carriers, Plenum, New York, 1997, p. 303.
  7. A. Elaissari, M. Rodrigue, F. Meunier, and C. Herve, J. Magn. Magn. Mater., 225, 127 (2001). https://doi.org/10.1016/S0304-8853(00)01240-3
  8. P. K. Gupta and C. T. Hung, Life Sci., 44, 175 (1989). https://doi.org/10.1016/0024-3205(89)90593-6
  9. N. Yanase, H. Noguchi, H. Asakura, and T. Suzuta, J. Appl. Polym. Sci., 50, 765 (1993). https://doi.org/10.1002/app.1993.070500504
  10. J. Ugelstad, A. Berge, T. Ellingsen, R. Schmid, T. N. Nilsen, P. C. Mork, P. Stenstad, E. Hornes, and O. Olsvik, Prog. Polym. Sci., 17, 87 (1992). https://doi.org/10.1016/0079-6700(92)90017-S
  11. Z. Ma, Y. Guan, and H. Liu, J. Polym. Sci. Part A, 43, 3433 (2005).
  12. N. A. D. Burke, H. D. H. Stöver, and F. P. Dawson, Chem. Mater., 14, 4752 (2002). https://doi.org/10.1021/cm020126q
  13. K. Butter, A. P. Philips, and G. J. Vroege, J. Magn. Magn. Mater., 252, 1 (2002). https://doi.org/10.1016/S0304-8853(02)00620-0
  14. M. Okubo, H. Minami, and T. Komura, J. Appl. Polym. Sci., 88, 428 (2003). https://doi.org/10.1002/app.11720
  15. S. Watanabe, K. Ueno, K. Kudoh, M. Murata, and Y. Masuda, Macromol. Rapid Commun., 21, 1323 (2000). https://doi.org/10.1002/1521-3927(20001201)21:18<1323::AID-MARC1323>3.0.CO;2-X
  16. S. Kobayahsi, H, Uyama, S. W. Lee, and Y. Matsumoto, J. Polym. Sci. Part A, 31, 3133 (1993). https://doi.org/10.1002/pola.1993.080311229
  17. E. Bourgeat-Lami and A. Guyot, Polym. Bull., 35, 691 (1995). https://doi.org/10.1007/BF00294951